Featured Research

from universities, journals, and other organizations

Why our prehistoric, parasitic 'jumping' genes don't send us into meltdown

Date:
June 20, 2013
Source:
University of Nottingham
Summary:
A new study reveals for the first time how the movement and duplication of segments of DNA known as transposons, is regulated. This prevents a genomic meltdown, and instead enables transposons to live in harmony with their hosts — including humans.

Transposon-structure.
Credit: Image courtesy of University of Nottingham

The study reveals for the first time how the movement and duplication of segments of DNA known as transposons, is regulated. This prevents a genomic meltdown, and instead enables transposons to live in harmony with their hosts -- including humans.

Transposons were discovered in the 1940s by Barbara McClintock, who was rewarded in 1983 with the Nobel Prize for Physiology or Medicine. Ancient relics of these 'jumping genes', as they are sometimes called, make up 50 per cent of the DNA in humans. They are characterised as 'jumping' because they can change their position within the genome, thereby creating or reversing mutations. This process, known as DNA transposition, plays a critical role in creating genetic diversity and enabling species to adapt and evolve.

Transposons don't just jump from one location to another; they usually leave behind a copy of themselves at their original location. Left unchecked, this would lead to an exponential increase in their numbers. Exponential growth is always unsustainable, and in the case of transposons they would quickly kill their host.

Because this doesn't happen, clearly some form of regulation is taking place within the genome. For a long time, scientists have understood that an enzyme called transposase, which is critical to the whole transposition process, also apparently brings it under control.

How this actually occurs has, however, remained a mystery -- until now. For the first time, the new study, carried out by researchers at The University of Nottingham, The University of Cambridge and the Fred Hutchinson Cancer Centre in Seattle, successfully identified the mechanism through which DNA transposition is regulated.

Ronald Chalmers, Professor of Molecular and Cellular Biology at The University of Nottingham, said "A successful parasite is not fatal to its host but lives in harmony with it. It was while doing some biochemistry research that we stumbled upon the solution. It was so simple that initially it was hard to appreciate the brilliance of it. It was a real forehead-slapping moment and seems a wonder that it was not discovered years ago."

"In theory, transposons should just keep on increasing and kill us," said Dr Karen Lipkow, from the Department of Biochemistry, University of Cambridge, and the Babraham Institute. "What we have identified is an ingenious mechanism which prevents this from happening by conferring autoregulation. The process is very simple, but it explains so much."

A biochemical analysis of a mariner-family transposon from the human genome gave the first indication of the mechanism. The team then expanded this concept using a computer model, which allowed them to simulate events on an evolutionary timescale, before carrying out further biochemical experiments.

Transposase is important to the genetic 'jump' of transposons because it catalyses the whole process. It does this by binding to specific sites at either end of the transposon, and then bringing these together to create a nucleoprotein complex that effectively performs a molecular 'cut and paste, moving the transposon DNA to a new location.

The study found that once a certain number of copies of the transposon have been created, the transposase concentration rises above a critical threshold and begins to saturate its own binding sites. As clusters of the enzyme compete for binding, they interfere with each other and the transposition process is halted.

Using the computer model, the researchers were able to show that doubling the transposon copy number halves the rate of transposition. This is a crucial insight as it reveals an underlying self-righting mechanism for homeostasis. In a nutshell, it makes the transposon's genetic burden on the host constant and predictable, and brings an uneasy harmony to the relationship.


Story Source:

The above story is based on materials provided by University of Nottingham. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Claeys Bouuaert, K. Lipkow, S. S. Andrews, D. Liu, R. Chalmers. The autoregulation of a eukaryotic DNA transposon. eLife, 2013; 2 (0): e00668 DOI: 10.7554/eLife.00668#sthash.q0LqrOvO.dpuf

Cite This Page:

University of Nottingham. "Why our prehistoric, parasitic 'jumping' genes don't send us into meltdown." ScienceDaily. ScienceDaily, 20 June 2013. <www.sciencedaily.com/releases/2013/06/130620132221.htm>.
University of Nottingham. (2013, June 20). Why our prehistoric, parasitic 'jumping' genes don't send us into meltdown. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/06/130620132221.htm
University of Nottingham. "Why our prehistoric, parasitic 'jumping' genes don't send us into meltdown." ScienceDaily. www.sciencedaily.com/releases/2013/06/130620132221.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins