Featured Research

from universities, journals, and other organizations

The link between circadian rhythms and aging: Gene associated with longevity also regulates the body's circadian clock

Date:
June 20, 2013
Source:
Massachusetts Institute of Technology
Summary:
Human sleeping and waking patterns are largely governed by an internal circadian clock that corresponds closely with the 24-hour cycle of light and darkness. This circadian clock also controls other body functions, such as metabolism and temperature regulation. A new study finds that a gene associated with longevity also regulates the body’s circadian clock.

A new study finds that a gene associated with longevity also regulates the body’s circadian clock.
Credit: iStockphoto

Human sleeping and waking patterns are largely governed by an internal circadian clock that corresponds closely with the 24-hour cycle of light and darkness. This circadian clock also controls other body functions, such as metabolism and temperature regulation.

Studies in animals have found that when that rhythm gets thrown off, health problems including obesity and metabolic disorders such as diabetes can arise. Studies of people who work night shifts have also revealed an increased susceptibility to diabetes.

A new study from MIT shows that a gene called SIRT1, previously shown to protect against diseases of aging, plays a key role in controlling these circadian rhythms. The researchers found that circadian function decays with aging in normal mice, and that boosting their SIRT1 levels in the brain could prevent this decay. Conversely, loss of SIRT1 function impairs circadian control in young mice, mimicking what happens in normal aging.

Since the SIRT1 protein itself was found to decline with aging in the normal mice, the findings suggest that drugs that enhance SIRT1 activity in humans could have widespread health benefits, says Leonard Guarente, the Novartis Professor of Biology at MIT and senior author of a paper describing the findings in the June 20 issue of Cell.

"If we could keep SIRT1 as active as possible as we get older, then we'd be able to retard aging in the central clock in the brain, and health benefits would radiate from that," Guarente says.

Staying on schedule

In humans and animals, circadian patterns follow a roughly 24-hour cycle, directed by the circadian control center of the brain, called the suprachiasmatic nucleus (SCN), located in the hypothalamus.

"Just about everything that takes place physiologically is really staged along the circadian cycle," Guarente says. "What's now emerging is the idea that maintaining the circadian cycle is quite important in health maintenance, and if it gets broken, there's a penalty to be paid in health and perhaps in aging."

Last year, Guarente found that a robust circadian period correlated with longer lifespan in mice. That got him wondering what role SIRT1, which has been shown to prolong lifespan in many animals, might play in that phenomenon. SIRT1, which Guarente first linked with aging more than 15 years ago, is a master regulator of cell responses to stress, coordinating a variety of hormone networks, proteins and genes to help keep cells alive and healthy.

To investigate SIRT1's role in circadian control, Guarente and his colleagues created genetically engineered mice that produce different amounts of SIRT1 in the brain. One group of mice had normal SIRT1 levels, another had no SIRT1, and two groups had extra SIRT1 -- either twice or 10 times as much as normal.

Mice lacking SIRT1 had slightly longer circadian cycles (23.9 hours) than normal mice (23.6 hours), and mice with a 10-fold increase in SIRT1 had shorter cycles (23.1 hours).

In mice with normal SIRT1 levels, the researchers confirmed previous findings that when the 12-hour light/dark cycle is interrupted, younger mice readjust their circadian cycles much more easily than older ones. However, they showed for the first time that mice with extra SIRT1 do not suffer the same decline in circadian control as they age.

The researchers also found that SIRT1 exerts this control by regulating the genes BMAL and CLOCK, the two major keepers of the central circadian clock.

Enhancing circadian function

A growing body of evidence suggests that being able to respond to large or small disruptions of the light/dark cycle is important to maintaining healthy metabolic function, Guarente says.

"Essentially we experience a mini jet lag every day because the light cycle is constantly changing. The critical thing for us is to be able to adapt smoothly to these jolts," Guarente says. "Many studies in mice say that while young mice do this perfectly well, it's the old mice that have the problem. So that could well be true in humans."

If so, it could be possible to treat or prevent diseases of aging by enhancing circadian function -- either by delivering SIRT1 activators in the brain or developing drugs that enhance another part of the circadian control system, Guarente says.

"I think we should look at every aspect of the machinery of the circadian clock in the brain, and any intervention that can maintain that machinery with aging ought to be good," he says. "One entry point would be SIRT1, because we've shown in mice that genetic maintenance of SIRT1 helps maintain circadian function."

Some SIRT1 activators are now being tested against diabetes, inflammation and other diseases, but they are not designed to cross the blood-brain barrier and would likely not be able to reach the SCN. However, Guarente believes it could be possible to design SIRT1 activators that can get into the brain.

Roman Kondratov, an associate professor of biology at Cleveland State University, says the study raises several exciting questions regarding the potential to delay or reverse age-related changes in the brain through rejuvenation of the circadian clock with SIRT1 enhancement.

"The importance of this study is that it has both basic and potentially translational applications, taking into account the fact that pharmacological modulators of SIRT1 are currently under active study," Kondratov says.

Researchers in Guarente's lab are now investigating the relationship between health, circadian function and diet. They suspect that high-fat diets might throw the circadian clock out of whack, which could be counteracted by increased SIRT1 activation.

The research was funded by the National Institutes of Health and the Glenn Foundation for Medical Research.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hung-Chun Chang, Leonard Guarente. SIRT1 Mediates Central Circadian Control in the SCN by a Mechanism that Decays with Aging. Cell, 2013; 153 (7): 1448 DOI: 10.1016/j.cell.2013.05.027

Cite This Page:

Massachusetts Institute of Technology. "The link between circadian rhythms and aging: Gene associated with longevity also regulates the body's circadian clock." ScienceDaily. ScienceDaily, 20 June 2013. <www.sciencedaily.com/releases/2013/06/130620132320.htm>.
Massachusetts Institute of Technology. (2013, June 20). The link between circadian rhythms and aging: Gene associated with longevity also regulates the body's circadian clock. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/06/130620132320.htm
Massachusetts Institute of Technology. "The link between circadian rhythms and aging: Gene associated with longevity also regulates the body's circadian clock." ScienceDaily. www.sciencedaily.com/releases/2013/06/130620132320.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins