Featured Research

from universities, journals, and other organizations

Nerve cells can work in different ways with same result

Date:
July 1, 2013
Source:
University of Missouri-Columbia
Summary:
Epilepsy, irregular heartbeats and other conditions caused by malfunctions in the body's nerve cells, also known as neurons, can be difficult to treat. The problem is that one medicine may help some patients but not others. Doctors' ability to predict which drugs will work with individual patients may be influenced by recent University of Missouri research that found seemingly identical neurons can behave the same even though they are built differently under the surface.

Epilepsy, irregular heartbeats and other conditions caused by malfunctions in the body's nerve cells, also known as neurons, can be difficult to treat. The problem is that one medicine may help some patients but not others. Doctors' ability to predict which drugs will work with individual patients may be influenced by recent University of Missouri research that found seemingly identical neurons can behave the same even though they are built differently under the surface.

"To paraphrase Leo Tolstoy, 'every unhappy nervous system is unhappy in its own way,' especially for individuals with epilepsy and other diseases," said David Schulz, associate professor of biological sciences in MU's College of Arts and Science. "Our study suggests that each patient's neurons may be altered in different ways, although the resulting disease is the same. This could be a major reason why doctors have difficulty predicting which medicines will be effective with specific individuals. The same problem could affect treatment of heart arrhythmia, depression and many other neurological conditions."

It turns out, even happy neurons may be happy in their own way. Neurons have a natural electric activity that they are biologically programmed to maintain. If a neuron isn't in that preferred state, the cell tries to restore it. However, contrary to some previous beliefs about neuron functioning, Schulz's research found that two essentially identical neurons can reach the same preferred electrical activity in different ways.

In Schulz's study, individual neurons used different combinations of cellular pores, known as ion channels, to achieve the same end goal of their preferred electrical and chemical balances. Schulz compared the situation to five people in separate rooms being given sets of blocks and told to construct a tower. Each person could devise a different method for constructing the same structure.

Schulz's finding could inform doctor's treatment of epilepsy. In epileptics, the neurons of the brain frequently receive too little stimulation from other neurons. Those under-stimulated epileptic neurons may overcompensate and become too sensitive. Then, when any impulses actually do reach them from other neurons, those hyper-sensitive epileptic neurons may over-react and cause a seizure.

Schulz worked with Satish Nair, professor of electrical and computer engineering in MU's College of Engineering. The collaboration allowed their team to model nerve cell behavior in computer simulations in addition to his physical experiments using crab nervous systems.

The study, "Neurons with the same network independently achieve conserved output by differentially balancing variable conductance magnitudes," was published in the Journal of Neuroscience. Joseph L. Ransdell, an MU doctoral student was the lead researcher of the study.

This research is an example of collaborative research, which is a hallmark of Mizzou Advantage. Mizzou Advantage is a program that focuses on four areas of MU strength: food for the future, media of the future, one health, one medicine, and sustainable energy. The goals of Mizzou Advantage are to strengthen existing faculty networks, create new networks and propel Mizzou's research, instruction and other activities to the next level.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University of Missouri-Columbia. "Nerve cells can work in different ways with same result." ScienceDaily. ScienceDaily, 1 July 2013. <www.sciencedaily.com/releases/2013/07/130701135818.htm>.
University of Missouri-Columbia. (2013, July 1). Nerve cells can work in different ways with same result. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/07/130701135818.htm
University of Missouri-Columbia. "Nerve cells can work in different ways with same result." ScienceDaily. www.sciencedaily.com/releases/2013/07/130701135818.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins