Featured Research

from universities, journals, and other organizations

New mechanism for human gene expression discovered

Date:
July 3, 2013
Source:
University of Chicago Medical Center
Summary:
Researchers have discovered the first human "bifunctional" gene -- a single gene that creates a single mRNA transcript that codes for two different proteins, simultaneously. Their finding elucidates a previously unknown mechanism in our basic biology, and has potential to guide therapy for at least one neurological disease.

Researchers have discovered the first human "bifunctional" gene -- a single gene that creates a single mRNA transcript that codes for two different proteins, simultaneously.
Credit: Collpicto / Fotolia

In a study that could change the way scientists view the process of protein production in humans, University of Chicago researchers have found a single gene that encodes two separate proteins from the same sequence of messenger RNA.

Published online July 3 in Cell, their finding elucidates a previously unknown mechanism in human gene expression and opens the door for new therapeutic strategies against a thus-far untreatable neurological disease.

“This is the first example of a mechanism in a higher organism in which one gene creates two proteins from the same mRNA transcript, simultaneously,” said Christopher Gomez, MD, PHD, professor and chairman of the Department of Neurology at the University of Chicago, who led the study. “It represents a paradigm shift in our understanding of how genes ultimately encode proteins.”

The human genome contains a similar number of protein-coding genes as the nematode worm (roughly 20,000). This disparity between biological complexity and gene count partially can be explained by the fact that individual genes can encode multiple protein variants via the production of different sequences of messenger RNA (mRNA)—short, mass-produced copies of genetic code that guide the creation of myriad cellular machinery.

Gomez and his team, which included first author Xiaofei Du, MD, discovered a new layer of complexity in this process of gene expression as they studied spinocerebellar ataxia type-6 (SCA6), a neurodegenerative disease that causes patients to slowly lose coordination of their muscles and eventually their ability to speak and stand. Human genetic studies identified its cause as a mutation in CACNA1A—a gene that encodes a calcium channel protein important for nerve cell function—resulting in extra copies of the amino acid glutamine.

However, although the gene, mutation and dysfunction are known, attempts to find the biological mechanism of the disease proved inconclusive. Calcium channel proteins with the mutation still seemed to function normally.

Suspecting another factor at play, Gomez and his team instead focused on α1ACT, a poorly understood, free-floating fragment of the CACNA1A calcium channel protein known to express extra copies of glutamine in SCA6 cells. The researchers first looked at its origin and found that, to their surprise, α1ACT was generated from the same mRNA sequence as the CACNA1A calcium channel.

For the first time, they had evidence of a human gene that coded one strand of mRNA that coded two separate, structurally distinct proteins. This occurred due to the presence of a special sequence in the mRNA known as an internal ribosomal entry site (IRES). Normally found at the beginning of an mRNA sequence, this IRES site sat in the middle, creating a second location for ribosomes, the cellular machines that read mRNA, to begin the process of protein production.

Looking at function, Gomez and his team found that normal α1ACT acted as a transcription factor and enhanced the growth of specific brain cells. Importantly, mutated α1ACT appeared to be toxic to nerve cells in a petri dish, and caused SCA6-like symptoms in an animal model.

The team hopes to discover other examples of human genes with similar IRES sites to better understand the implications of this new class of “bifunctional” genes on our basic biology. For now, they are focused on leveraging their findings toward helping SCA6 patients and already are working on ways to silence mutated α1ACT.

“We discovered this genetic phenomenon in the pursuit of a disease cause and, in finding it, immediately have a potential strategy for developing preclinical tools to treat that disease,” Gomez said. “If we can target the IRES and inhibit production of this mutant form of α1ACT in SCA6, we may be able to stop the progression of the disease.”

This work was supported by the National Ataxia Foundation, the National Organization of Rare Diseases and the National Institute of Neurological Disorders and Stroke.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaofei Du, Jun Wang, Haipeng Zhu, Lorenzo Rinaldo, Kay-Marie Lamar, Ann C. Palmenberg, Christian Hansel, Christopher M. Gomez. Second Cistron in CACNA1A Gene Encodes a Transcription Factor Mediating Cerebellar Development and SCA6. Cell, 3 July 2013 DOI: 10.1016/j.cell.2013.05.059

Cite This Page:

University of Chicago Medical Center. "New mechanism for human gene expression discovered." ScienceDaily. ScienceDaily, 3 July 2013. <www.sciencedaily.com/releases/2013/07/130703120554.htm>.
University of Chicago Medical Center. (2013, July 3). New mechanism for human gene expression discovered. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/07/130703120554.htm
University of Chicago Medical Center. "New mechanism for human gene expression discovered." ScienceDaily. www.sciencedaily.com/releases/2013/07/130703120554.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins