Featured Research

from universities, journals, and other organizations

Embedded nerve cells hold the key to brain activity

Date:
July 24, 2013
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Understanding complex systems such as the brain of mammals: Dr. Arvind Kumar and colleagues from the Bernstein Center and the Cluster of Excellence BrainLinks-BrainTools at the University of Freiburg present a new view on brain function. Much of today's brain research follows an approach that has been in use for decades: An area of the brain is either silenced of augmented in its activity, and the resulting effects in other parts of the brain -- or in the whole organ -- are measured. While this approach is very successful in understanding how the brain processes input from our senses, a team of scientists argues that it is too simple when trying to understand other brain regions.

Understanding complex systems such as the brain of mammals: Dr. Arvind Kumar and colleagues from the Bernstein Center and the Cluster of Excellence BrainLinks-BrainTools at the University of Freiburg present a new view on brain function. Much of today's brain research follows an approach that has been in use for decades: An area of the brain is either silenced of augmented in its activity, and the resulting effects in other parts of the brain -- or in the whole organ -- are measured. While this approach is very successful in understanding how the brain processes input from our senses, a team of scientists from Freiburg argues that it is too simple when trying to understand other brain regions.

The team presents their findings in the current issue of the journal Trends in Neuroscience.

"The traditional approach reduces the brain's enormous complexity by defining relatively arbitrary subunits," Kumar and his colleagues explain. For this abstraction to work, information must flow in one direction only. But this is not what happens in the brain, which is a complex network of smaller sub-networks that allows feedback to preceding units. Even for a network of ten units, unraveling each unit's function would require more than 100,000 individual experimental setups -- an impossible task.

"Perhaps, the main question in understanding the brain is not so much how a particular area affects the activity of others, but rather how exactly brain activity can be changed from one state to another," Kumar states.

For this purpose, the neuroscientists introduced a new quality of nerve cells: their embeddedness. This is a measure for the role that a neuron plays within a network. It combines data about where a nerve cell receives information from, where it connects to, and how much it contributes to the whole network. The researchers combine this idea with the insight that already a limited number of elements within a network can control its overall behavior. Concentrating on these 'driving neurons' promises that even manipulating only a small number of nerve cells will provide new insight about the dynamics within the whole network.

The team from Freiburg hopes that this will open new perspectives on understanding the brain, its function -- and dysfunction.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arvind Kumar, Ioannis Vlachos, Ad Aertsen, Clemens Boucsein. Challenges of understanding brain function by selective modulation of neuronal subpopulations. Trends in Neurosciences, 2013; DOI: 10.1016/j.tins.2013.06.005

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Embedded nerve cells hold the key to brain activity." ScienceDaily. ScienceDaily, 24 July 2013. <www.sciencedaily.com/releases/2013/07/130724102612.htm>.
Albert-Ludwigs-Universität Freiburg. (2013, July 24). Embedded nerve cells hold the key to brain activity. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/07/130724102612.htm
Albert-Ludwigs-Universität Freiburg. "Embedded nerve cells hold the key to brain activity." ScienceDaily. www.sciencedaily.com/releases/2013/07/130724102612.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) — Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) — The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) — A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) — A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins