Featured Research

from universities, journals, and other organizations

Physics of running fast: Scientists model 'extraordinary' performance of Bolt

Date:
July 25, 2013
Source:
Institute of Physics (IOP)
Summary:
As the world’s best athletes descend on London today to take part in the Olympic Anniversary Games, a group of researchers from Mexico has provided an insight into the physics of one of the greatest athletic performances of all time. Researchers have put forward a mathematical model that accurately depicts the extraordinary feats of Usain Bolt during his 100 meter world record sprint at the 2009 World Championships in Berlin.

As the world’s best athletes descend on London today to take part in the Olympic Anniversary Games, a group of researchers from Mexico has provided an insight into the physics of one of the greatest athletic performances of all time.

In a new paper published today, 26 July, in IOP Publishing’s European Journal of Physics, the researchers have put forward a mathematical model that accurately depicts the extraordinary feats of Usain Bolt during his 100 metre world record sprint at the 2009 World Championships in Berlin.

According to the researchers’ model, Bolt’s time of 9.58 seconds—which is still the world record—was achieved by reaching a terminal velocity of 12.2 metres per second and exerting an average force of 815.8 newtons.

What was truly amazing about his performance, however, was the amount of power and energy that Bolt had to exert to overcome the effects of drag caused by air resistance, which were exacerbated by Bolt’s huge 6ft 5in frame.

By taking into account the altitude of the Berlin track, the temperature at the time of the race and the cross-section of Bolt himself, the researchers calculated that he had a drag coefficient of 1.2, which is less aerodynamic than the average human.

According to the calculations, Bolt developed 81.58 kJ of energy during the 9.58 seconds, but only 7.79% of this was used to achieve motion; the remaining 92.21% (75.22 kJ) was absorbed by the drag.

Furthermore, the researchers calculated that Bolt had a maximum power of 2619.5 watts after only 0.89 seconds of the race, when he was at half of his maximum speed, demonstrating the almost instant effect of the drag.

Co-author of the study, Jorge Hernandez, said: “Our calculated drag coefficient highlights the outstanding ability of Bolt. He has been able to break several records despite not being as aerodynamic as a human can be. The enormous amount of work that Bolt developed in 2009, and the amount that was absorbed by drag, is truly extraordinary.

“It is so hard to break records nowadays, even by hundredths of a second, as the runners must act very powerfully against a tremendous force which increases massively with each bit of additional speed they are able to develop.

“This is all because of the ‘physical barrier’ imposed by the conditions on Earth. Of course, if Bolt were to run on a planet with a much less dense atmosphere, he could achieve records of fantastic proportions.”

Officials overseeing the event in London this weekend may also be interested in the researchers’ findings, as they’ve claimed that their equations can also be used to account for the effect of a tailwind, which can vary between races and significantly reduce running times.

To demonstrate the equations’ applicability, the researchers, from the National Autonomous University of Mexico, compared Bolt’s time in Berlin with his previous world-record time—9.69 seconds—set during the Beijing Olympics a year earlier.

In Beijing Bolt was running with no tailwind, but in Berlin there was a tailwind of 0.9 metres per second. According to the researchers’ new equations, Bolt would have clocked a slower time in Berlin if there was no tailwind, but would still have beaten his world record from Beijing—they predict that he would have run a time of 9.68 seconds.

The calculations in the study were tested for accuracy by fitting real-life experimental data into the equations. The data were from the International Association of Athletics Federation’s (IAAF) laser velocity guard device, which recorded Bolt’s position and speed every one-tenth of a second during the 2009 race in Berlin.

“The accurate recording of Bolt’s position and speed during the race provided a splendid opportunity for us to study the effects of drag on a sprinter. If more data become available in the future, it would be interesting to see what distinguishes one athlete from another,” continued Jorge Hernandez.

Related Articles



Story Source:

The above story is based on materials provided by Institute of Physics (IOP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Jorge Hernandez et al. On the performance of Usain Bolt in the 100 m sprint. Eur. J. Phys., 2013 [link]

Cite This Page:

Institute of Physics (IOP). "Physics of running fast: Scientists model 'extraordinary' performance of Bolt." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725202329.htm>.
Institute of Physics (IOP). (2013, July 25). Physics of running fast: Scientists model 'extraordinary' performance of Bolt. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/07/130725202329.htm
Institute of Physics (IOP). "Physics of running fast: Scientists model 'extraordinary' performance of Bolt." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725202329.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Fauci Says Ebola Risk in US "essentially Zero"

Fauci Says Ebola Risk in US "essentially Zero"

AP (Oct. 30, 2014) NIAID Director Anthony Fauci said the risk of Ebola becoming an epidemic in the U.S. is essentially zero Thursday at the Washington Ideas Forum. He also said an Ebola vaccine will be tested in West Africa in the next few months. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Nurse Defies Ebola Quarantine With Bike Ride

Nurse Defies Ebola Quarantine With Bike Ride

AP (Oct. 30, 2014) A nurse who vowed to defy Maine's voluntary quarantine for health care workers who treated Ebola patients followed through on her promise Thursday, leaving her home for an hour-long bike ride. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Pot-Infused Edibles Raise Concerns in Colorado

Pot-Infused Edibles Raise Concerns in Colorado

AFP (Oct. 30, 2014) Colorado may have legalized marijuana for recreational use, but the debate around the decision still continues, with a recent - failed - attempt to ban cannabis-infused edibles. Duration: 01:53 Video provided by AFP
Powered by NewsLook.com
British Navy Ship Arrives in Sierra Leone With Ebola Aid

British Navy Ship Arrives in Sierra Leone With Ebola Aid

AFP (Oct. 30, 2014) The British ship RFA ARGUS arrived in Sierra Leone to deliver supplies and equipment to help the fight against Ebola. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins