Featured Research

from universities, journals, and other organizations

Analysis of 26 networked autism genes suggests functional role in the cerebellum

Date:
July 25, 2013
Source:
Cold Spring Harbor Laboratory
Summary:
Scientists have obtained intriguing insights into two groups of autism candidate genes in the mammalian brain that new evidence suggests are functionally and spatially related. The newly published analysis identifies two networked groupings from 26 genes associated with autism that are overexpressed in the cerebellar cortex, in areas dominated by neurons called granule cells.

A graphic representation of expression data for the autism genes in "clique 1," as translated into color intensities in this heat map. Yellow corresponds with the greatest intensity of expression of the genes co-expressed in this clique. Their location in the mouse brain is clearly focused in the cerebellum, at the "back" of the brain as shown in the sagittal, or side, view. Coronal view simulates a view directly through the brain from the front; the axial view simulates a view from directly above the brain.
Credit: Image courtesy of Cold Spring Harbor Laboratory

A team of scientists has obtained intriguing insights into two groups of autism candidate genes in the mammalian brain that new evidence suggests are functionally and spatially related. The newly published analysis identifies two networked groupings from 26 genes associated with autism that are overexpressed in the cerebellar cortex, in areas dominated by neurons called granule cells.

The team, composed of neuroscientists and computational biologists, worked from a database providing expression levels of individual genes throughout the mouse brain, as complied in the open-source Allen Mouse Brain Atlas. To promote reproducibility, the scientists surveyed expression data of over 3000 genes, about three-fourths of all the genes listed in the Atlas for which two independent sets of data have been complied.

The work was led by Professor Partha Mitra of Cold Spring Harbor Laboratory (CSHL) and scientists from MindSpec, a nonprofit research organization, founded by Dr. Sharmila Banerjee-Basu.

Despite obvious genetic and neuroanatomical differences between mouse and human, the team explains, mouse models are extremely effective in dissecting out the role of specific genes, pathways, neuronal subtypes and brain regions in specific abnormal behaviors manifested in both mice and people.

Based on years of studies in both species, scientists now know of mutations affecting more than 300 genes whose occurrence correlates with autism susceptibility; more are certain to be identified. Some of these candidate genes are more strongly correlated with the illness than others, although correlation is not the same thing as direct evidence of causation.

Nevertheless, "the key question as yet unanswered," notes Dr. Mitra, "concerns the way or ways in which particular mutations, singly or in combination, cause pathologies that result in the complex combination of symptoms that characterizes autism in children." It is assumed that autism pathologies are the result of insults -- genetic, environmental, or most likely both -- sustained at the time of conception and early in development.

Dr. Idan Menashe, now of Ben-Gurion University of the Negev in Israel, and Dr. Pascal Grange, a postdoctoral researcher in the Mitra lab, demonstrated that co-expression of 26 autism genes was "significantly higher" than would occur by chance. "This suggests that these 26 genes have common neuro-functional properties," says Dr. Menashe.

The team found two co-expressed networks or "cliques" of genes that are significantly enriched with autism genes. They then asked where in the mouse brain these cliques are expressed. Notably, genes in both groups showed significant overexpression in the cerebellar cortex, and particularly in regions in which granule cells predominate. "This result supports prior studies pointing to involvement of the cerebellum in autism," says Dr. Grange. Specifically, a recent neuroimaging study highlighted functional subregions in the cerebellum as playing a role in both motor and cognitive tasks. Other genes associated with autism have been shown in other studies to play a role in the development of this brain region.

"Our study provides insights into co-expression properties of genes associated with autism and suggests specific brain regions implicated in pathology. Complementing these findings with additional genomic and neuroimaging analyses from both mouse and human brains will help in obtaining a broader picture of the autistic brain," the team concludes.

The research described in this release was made possible by grants from: NIH-NIDA (R21DA027644-01).

"Co-expression profiling of autism genes in the mouse brain" appears online head of print in PLOS Computational Biology. The authors are: Idan Menashe, Pascal Grange, Eric C. Larsen, Sharmila Banerjee-Basu and Partha P. Mitra.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Idan Menashe, Pascal Grange, Eric C. Larsen, Sharmila Banerjee-Basu, Partha P. Mitra. Co-expression Profiling of Autism Genes in the Mouse Brain. PLoS Computational Biology, 2013; 9 (7): e1003128 DOI: 10.1371/journal.pcbi.1003128

Cite This Page:

Cold Spring Harbor Laboratory. "Analysis of 26 networked autism genes suggests functional role in the cerebellum." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725202434.htm>.
Cold Spring Harbor Laboratory. (2013, July 25). Analysis of 26 networked autism genes suggests functional role in the cerebellum. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/07/130725202434.htm
Cold Spring Harbor Laboratory. "Analysis of 26 networked autism genes suggests functional role in the cerebellum." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725202434.htm (accessed April 24, 2014).

Share This



More Mind & Brain News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
Do We Get Nicer With Age?

Do We Get Nicer With Age?

Newsy (Apr. 22, 2014) A recent report claims personality can change over time as we age, and usually that means becoming nicer and more emotionally stable. Video provided by Newsy
Powered by NewsLook.com
How to Master Motherhood With the Best Work/Life Balance

How to Master Motherhood With the Best Work/Life Balance

TheStreet (Apr. 22, 2014) In the U.S., there are more than 11 million couples trying to conceive at any given time. From helping celebrity moms like Bethanny Frankel to ordinary soon-to-be-moms, TV personality and parenting expert, Rosie Pope, gives you the inside scoop on mastering motherhood. London-born entrepreneur Pope is the creative force behind Rosie Pope Maternity and MomPrep. She explains why being an entrepreneur offers the best life balance for her and tips for all types of moms. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins