Featured Research

from universities, journals, and other organizations

A faster vessel for charting the brain

Date:
July 25, 2013
Source:
Princeton University
Summary:
Researchers have created "souped up" versions of the calcium-sensitive proteins that for the past decade or so have given scientists an unparalleled view and understanding of brain-cell communication.

Princeton University researchers have created "souped up" versions of the calcium-sensitive proteins that for the past decade or so have given scientists an unparalleled view and understanding of brain-cell communication.

Reported July 18 in the journal Nature Communications, the enhanced proteins developed at Princeton respond more quickly to changes in neuron activity, and can be customized to react to different, faster rates of neuron activity. Together, these characteristics would give scientists a more precise and comprehensive view of neuron activity.

The researchers sought to improve the function of proteins known as green fluorescent protein/calmodulin protein (GCaMP) sensors, an amalgam of various natural proteins that are a popular form of sensor proteins known as genetically encoded calcium indicators, or GECIs. Once introduced into the brain via the bloodstream, GCaMPs react to the various calcium ions involved in cell activity by glowing fluorescent green. Scientists use this fluorescence to trace the path of neural signals throughout the brain as they happen.

GCaMPs and other GECIs have been invaluable to neuroscience, said corresponding author Samuel Wang, a Princeton associate professor of molecular biology and the Princeton Neuroscience Institute. Scientists have used the sensors to observe brain signals in real time, and to delve into previously obscure neural networks such as those in the cerebellum. GECIs are necessary for the BRAIN Initiative President Barack Obama announced in April, Wang said. The estimated $3 billion project to map the activity of every neuron in the human brain cannot be done with traditional methods, such as probes that attach to the surface of the brain. "There is no possible way to complete that project with electrodes, so you have to do it with other tools -- GECIs are those tools," he said.

Despite their value, however, the proteins are still limited when it comes to keeping up with the fast-paced, high-voltage ways of brain cells, and various research groups have attempted to address these limitations over the years, Wang said.

"GCaMPs have made significant contributions to neuroscience so far, but there have been some limits and researchers are running up against those limits," Wang said.

One shortcoming is that GCaMPs are about one-tenth of a second slower than neurons, which can fire hundreds of times per second, Wang said. The proteins activate after neural signals begin, and mark the end of a signal when brain cells have (by neuronal terms) long since moved on to something else, Wang said. A second current limitation is that GCaMPs can only bind to four calcium ions at a time. Higher rates of cell activity cannot be fully explored because GCaMPs fill up quickly on the accompanying rush of calcium.

The Princeton GCaMPs respond more quickly to changes in calcium so that changes in neural activity are seen more immediately, Wang said. By making the sensors a bit more sensitive and fragile -- the proteins bond more quickly with calcium and come apart more readily to stop glowing when calcium is removed -- the researchers whittled down the roughly 20 millisecond response time of existing GCaMPs to about 10 milliseconds, Wang said.

The researchers also tweaked certain GCaMPs to be sensitive to different types of calcium ion concentrations, meaning that high rates of neural activity can be better explored. "Each probe is sensitive to one range or another, but when we put them together they make a nice choir," Wang said.

The researchers' work also revealed the location of a "bottleneck" in GCaMPs that occurs when calcium concentration is high, which poses a third limitation of the existing sensors, Wang said. "Now that we know where that bottle neck is, we think we can design the next generation of proteins to get around it," Wang said. "We think if we open up that bottleneck, we can get a probe that responds to neuronal signals in one millisecond."

The faster protein that the Princeton researchers developed could pair with work in other laboratories to improve other areas of GCaMP function, Wang said. For instance, a research group out of the Howard Hughes Medical Institute reported in Nature July 17 that it developed a GCaMP with a brighter fluorescence. Such improvements on existing sensors gradually open up more of the brain to exploration and understanding, said Wang, adding that the Princeton researchers will soon introduce their sensor into fly and mammalian brains.

"At some level, what we've done is like taking apart an engine, lubing up the parts and putting it back together. We took what was the best version of the protein at the time and made changes to the letter code of the protein," Wang said. "We want to watch the whole symphony of thousands of neurons do their thing, and we think this variant of GCaMPs will help us do that better than anyone else has."


Story Source:

The above story is based on materials provided by Princeton University. The original article was written by Morgan Kelly. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaonan R. Sun, Aleksandra Badura, Diego A. Pacheco, Laura A. Lynch, Eve R. Schneider, Matthew P. Taylor, Ian B. Hogue, Lynn W. Enquist, Mala Murthy, Samuel S. -H. Wang. Fast GCaMPs for improved tracking of neuronal activity. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3170

Cite This Page:

Princeton University. "A faster vessel for charting the brain." ScienceDaily. ScienceDaily, 25 July 2013. <www.sciencedaily.com/releases/2013/07/130725202438.htm>.
Princeton University. (2013, July 25). A faster vessel for charting the brain. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2013/07/130725202438.htm
Princeton University. "A faster vessel for charting the brain." ScienceDaily. www.sciencedaily.com/releases/2013/07/130725202438.htm (accessed July 26, 2014).

Share This




More Health & Medicine News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
Too Few Teens Receiving HPV Vaccination, CDC Says

Too Few Teens Receiving HPV Vaccination, CDC Says

Newsy (July 24, 2014) The Centers for Disease Control and Prevention is blaming doctors for the low number of children being vaccinated for HPV. Video provided by Newsy
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins