Featured Research

from universities, journals, and other organizations

New way to create 'gradients' for understanding molecular interactions

Date:
July 26, 2013
Source:
North Carolina State University
Summary:
Scientists use tools called gradients to understand how molecules interact in biological systems. Researchers have developed a new technique for creating biomolecular gradients that is both simpler than existing techniques and that creates additional surface characteristics that allow scientists to monitor other aspects of molecular behavior.

The new technique begins with a substrate made of indium gallium nitride. Negatively-charged oxides form on the surface, which then bind to the amino acid L-arginine.
Credit: Lauren Bain

Scientists use tools called gradients to understand how molecules interact in biological systems. Researchers from North Carolina State University have developed a new technique for creating biomolecular gradients that is both simpler than existing techniques and that creates additional surface characteristics that allow scientists to monitor other aspects of molecular behavior.

A gradient is a material that has a specific molecule on its surface, with the concentration of the molecule sloping from a high concentration on one end to a low concentration at the other end. The gradient is used not only to determine whether other molecules interact with the molecules on the gradient, but to determine the threshold level at which any interactions take place.

The new technique begins by creating a substrate, prepared in the lab of NC State professor Dr. Salah Bedair, out of the semiconductor material indium gallium nitride (InGaN). The substrate itself is a gradient, sloping from an indium-rich end (with a larger proportion of indium to gallium) to a gallium-rich end. The indium-rich end is more conducive to the formation of oxides. When exposed to humidity, negatively charged indium and gallium oxides form on the surface of the substrate. The substrate development for these purposes was proposed by Dr. Tania Paskova, a professor of electrical and computer engineering at NC State.

The researchers then put the substrate into a solution that contains an amino acid called L-arginine, which is positively charged at biologically relevant pH levels -- such as those found in the human body.

"The L-arginine binds to the negatively charged oxides on the surface of the substrate," says Lauren Bain, a Ph.D. student at NC State who is lead author of a paper on the work. "Because there is more oxide accumulation at the indium-rich end, there is a higher concentration of L-arginine at that end, and the concentration gradually declines along the surface of the substrate as you move toward the gallium-rich end.

"We studied L-arginine because it is small, but relevant. Because it is small, we could easily assess what was happening during our study," Bain says. "But because it is a building block for proteins, we can build on this work to study full peptides and proteins -- such as ligands that bind to cell receptors."

"This technique also creates changes in the topography of the InGaN's surface, based on the different crystalline structures within the material as its shifts from being indium-rich to being gallium-rich," says Dr. Albena Ivanisevic, senior author of the paper. "This allows us to assess topographical differences in molecular adhesion, which is important, given the variety of topographies found in biological systems." Ivanisevic is an associate professor of materials science and engineering at NC State and associate professor of the joint biomedical engineering program at NC State and the University of North Carolina at Chapel Hill.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lauren E Bain, Scott A Jewett, Aadhithya Hosalli Mukund, Salah M Bedair, Tania M Paskova, Albena Ivanisevic. Biomolecular Gradients via Semiconductor Gradients: Characterization of Amino Acid Adsorption to InxGa1–xN Surfaces. ACS Applied Materials & Interfaces, 2013; 130723152540006 DOI: 10.1021/am4015555

Cite This Page:

North Carolina State University. "New way to create 'gradients' for understanding molecular interactions." ScienceDaily. ScienceDaily, 26 July 2013. <www.sciencedaily.com/releases/2013/07/130726103353.htm>.
North Carolina State University. (2013, July 26). New way to create 'gradients' for understanding molecular interactions. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/07/130726103353.htm
North Carolina State University. "New way to create 'gradients' for understanding molecular interactions." ScienceDaily. www.sciencedaily.com/releases/2013/07/130726103353.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins