Featured Research

from universities, journals, and other organizations

A new tool for brain research

Date:
August 1, 2013
Source:
University of Nottingham
Summary:
Physicists and neuroscientists have unlocked one of the mysteries of the human brain, thanks to new research using functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG).

Physicists and neuroscientists from The University of Nottingham and University of Birmingham have unlocked one of the mysteries of the human brain, thanks to new research using functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG).

The work will enable neuroscientists to map a kind of brain function that up to now could not be studied, allowing a more accurate exploration of how both healthy and diseased brains work.

Functional MRI is commonly used to study how the brain works, by providing spatial maps of where in the brain external stimuli, such as pictures and sounds, are processed. The fMRI scan does this by detecting indirect changes in the brain's blood flow in response to changes in electrical signalling during the stimulus.

A signal change that happens after the stimulus has stopped is also observed with the fMRI scan. This is called the post-stimulus signal and up until now it has not been used to study how the brain works because its origin was uncertain.

In novel experiments, the research team has now combined fMRI techniques with EEG, which measures electrical activity in the brain, to show that the post-stimulus signal also actually reflects changes in brain signalling.

18 healthy volunteers were monitored by using EEG to measure the electrical activity generated by their brains' neurons (the signalling cells) while simultaneously recording fMRI measurements. A stimulus of electrical pulses was used to activate the part of the brain that controls movement in the right thumb.

The scientists then compared the EEG and fMRI signals and found that they both vary in the same way after the stimulus stops. This provides compelling evidence that the post-stimulus fMRI signal is a measure of neuronal activity rather than just changes in the brain's blood flow. Curiously, the team also found the post-stimulus fMRI signal was not consistent, even though the stimulus input to the brain was the same each time. This natural variability in the brain response was also reflected by the EEG activity and the researchers suggest that this signal might help the brain make the transition from processing stimuli back to their internal thoughts in different ways.

Dr Karen Mullinger from The University of Nottingham's Sir Peter Mansfield Magnetic Resonance Centre said: "This work opens a new window of time in the fMRI signal in which we can look at what the brain is doing. It may also open up new research avenues in exploring the function of the healthy brain and the study of neurological diseases."

Dr Stephen Mayhew from Birmingham University Imaging Centre said "We do not know what the exact role of the post-stimulus activity is or why this response is not always consistent when the stimulus input to the brain is the same. We have already secured funding through the Birmingham-Nottingham Strategic Collaboration Fund to continue this research into further understanding of human brain function using combinations of neuroimaging methods."

Director of the Sir Peter Mansfield Magnetic Resonance Centre, Professor Peter Morris, said: "Functional magnetic resonance imaging is the main tool available to cognitive neuroscientists for the investigation of human brain function. The demonstration in this paper, that the secondary fMRI response (the post-stimulus undershoot) is not simply a passive blood flow response, but is directly related to synchronous neural activity, as measured with EEG, heralds an exciting new chapter in our understanding of the workings of the human mind."

The work has been funded by the Medical Research Council (MRC), Engineering and Physical Science Research Council (EPSRC), The University of Nottingham Anne McLaren Fellowships and University of Birmingham Fellowship and is published in the Proceedings of the National Academy of Sciences (PNAS).


Story Source:

The above story is based on materials provided by University of Nottingham. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. J. Mullinger, S. D. Mayhew, A. P. Bagshaw, R. Bowtell, S. T. Francis. Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1221287110

Cite This Page:

University of Nottingham. "A new tool for brain research." ScienceDaily. ScienceDaily, 1 August 2013. <www.sciencedaily.com/releases/2013/08/130801113100.htm>.
University of Nottingham. (2013, August 1). A new tool for brain research. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/08/130801113100.htm
University of Nottingham. "A new tool for brain research." ScienceDaily. www.sciencedaily.com/releases/2013/08/130801113100.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins