Featured Research

from universities, journals, and other organizations

Potential nutritional therapy for childhood neurodegenerative disease

Date:
August 1, 2013
Source:
University of California, San Diego Health Sciences
Summary:
Researchers have identified the gene mutation responsible for a particularly severe form of pontocerebellar hyplasia, a currently incurable neurodegenerative disease affecting children. Based on results in cultured cells, they are hopeful that a nutritional supplement may one day be able to prevent or reverse the condition.

Healthy brains require a balance of two energy sources -- ATP and GTP -- regulated by the gene AMPD2. A mutation in the gene can result in pontocerebellar hypoplasia, a neurodegenerative disease afflicting children.
Credit: Illustration courtesy of Evgeny Onutchin, Buryat Studio

Researchers at the University of California, San Diego School of Medicine have identified the gene mutation responsible for a particularly severe form of pontocerebellar hypoplasia, a currently incurable neurodegenerative disease affecting children. Based on results in cultured cells, they are hopeful that a nutritional supplement may one day be able to prevent or reverse the condition.

Related Articles


The study, from a team of international collaborators led by Joseph G. Gleeson, MD -- Howard Hughes Medical Institute investigator and professor in the UCSD Departments of Neurosciences and Pediatrics and at Rady Children's Hospital-San Diego, a research affiliate of UC San Diego -- will be published in the August 1 issue of the journal Cell.

Pontocerebellar hypoplasia is a group of rare, related genetic neurological disorders characterized by abnormal development of the brain, resulting in disabilities in movement and cognitive function. Most patients do not survive to adulthood.

Gleeson and colleagues identified a specific gene mutation that causes pontocerebellar hypoplasia and linked it to an inability of brain cells to generate a form of energy required to synthesize proteins. Without this ability, neurons die, but the researchers also found that bypassing this block with a nutritional supplement restored neuronal survival.

"The goal is to one day use this supplement to prevent or reverse the course of neurodegeneration in humans, and thus cure this disease," said Gleeson.

Nucleotides are the main energy source of cells. They exist in two forms: ATP and GTP. While ATP fuels most energy requirements, GTP is the source for protein synthesis. Mutations in the gene AMPD2 lead to the accumulation of ATP, and the subsequent depletion of GTP. The result, said Gleeson, is an imbalance in the cell's energy source, which prevents protein synthesis and causes neurodegeneration.

"These patients have what is described in medical textbooks as an untreatable disease, yet show mutations in a neuronal pathway that should be amenable to medication," said study co-author Naiara Akizu, PhD, a member of Gleeson's lab. "We chose to bypass this block using AICAR, a substance known to improve exercise endurance."

The researchers tested their AICAR-based treatment in genetic models of the disease and in human cells. The next step, said Gleeson, will be to test AICAR in a mouse model of pontocerebellar hypoplasia that his lab has created, followed by human trials.

"We don't know if AICAR will work in mice or humans yet, but our work in cells definitely points in that direction," said co-author Vincent Cantagrel, PhD. "This rare disorder might be one of the first treatable neurodegenerative diseases in humans."

Other co-authors include Jana Schroth, Na Cai, Keith Vaux, Ali G. Fenstermaker, Jennifer L. Silhavy, Emily Spencer, Rasim Ozgur Rosti, Eric Scott, Douglas McCloskey, Robert K. Naviaux, Jeremy Van Vleet, UCSD Departments of Neurosiences, Bioengineering, Medicine, Pediatrics, Pathology and Glycotechnology Core Resource; Edward W. Holmes, Sanford Consortium for Regenerative Medicine; Judith S. Scheliga Sanford-Burnham Medical Research Institute; Keiko Toyama, Hiroko Morisaki and Takayuki Morisaki, Osaka University; Fatma Mujgan Sonmez and Figen Celep, Turgut Ozal University and Karadeniz Technical University, Turkey; Azza Oraby and Maha S. Zaki, Cairo University Children's Hospital, and National Research Center, Egypt; Raidah Al-Baradie, Eissa Faqeih and Mohammed Saleh, King Fahd Specialist Hospital and Children's Hospital, Kingdom of Saudi Arabia; Elizabeth Nickerson and Stacey Gabriel, The Broad Institute of MIT and Harvard University.

Funding for this research came, in part, from the National Institutes of Health (grants HD070494, NS048453), the Howard Hughes Medical Institute, California Institute for Regenerative Medicine, UCSD Christini Fund, Jane Botsford Johnson Foundation, Broad Institute, Center for Inherited Disease Research and Simons Foundation Autism Research Initiative.


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. The original article was written by Scott LaFee. Note: Materials may be edited for content and length.


Journal Reference:

  1. Naiara Akizu, Vincent Cantagrel, Jana Schroth, Na Cai, Keith Vaux, Douglas McCloskey, RobertK. Naviaux, Jeremy VanVleet, AliG. Fenstermaker, JenniferL. Silhavy, JudithS. Scheliga, Keiko Toyama, Hiroko Morisaki, Fatma M. Sonmez, Figen Celep, Azza Oraby, MahaS. Zaki, Raidah Al-Baradie, Eissa A. Faqeih, Mohammed A.M. Saleh, Emily Spencer, RasimOzgur Rosti, Eric Scott, Elizabeth Nickerson, Stacey Gabriel, Takayuki Morisaki, EdwardW. Holmes, JosephG. Gleeson. AMPD2 Regulates GTP Synthesis and Is Mutated in a Potentially Treatable Neurodegenerative Brainstem Disorder. Cell, 2013; 154 (3): 505 DOI: 10.1016/j.cell.2013.07.005

Cite This Page:

University of California, San Diego Health Sciences. "Potential nutritional therapy for childhood neurodegenerative disease." ScienceDaily. ScienceDaily, 1 August 2013. <www.sciencedaily.com/releases/2013/08/130801125028.htm>.
University of California, San Diego Health Sciences. (2013, August 1). Potential nutritional therapy for childhood neurodegenerative disease. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2013/08/130801125028.htm
University of California, San Diego Health Sciences. "Potential nutritional therapy for childhood neurodegenerative disease." ScienceDaily. www.sciencedaily.com/releases/2013/08/130801125028.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins