Featured Research

from universities, journals, and other organizations

Speedier scans reveal new distinctions in resting and active brain

Date:
August 1, 2013
Source:
Washington University School of Medicine
Summary:
A boost in the speed of brain scans is unveiling new insights into how brain regions work with each other in cooperative groups called networks.

A boost in the speed of brain scans is unveiling new insights into how brain regions work with each other in cooperative groups called networks.

Related Articles


Scientists at Washington University School of Medicine in St. Louis and the Institute of Technology and Advanced Biomedical Imaging at the University of Chieti, Italy, used the quicker scans to track brain activity in volunteers at rest and while they watched a movie.

"Brain activity occurs in waves that repeat as slowly as once every 10 seconds or as rapidly as once every 50 milliseconds," said senior researcher Maurizio Corbetta, MD, the Norman J. Stupp Professor of Neurology. "This is our first look at these networks where we could sample activity every 50 milliseconds, as well as track slower activity fluctuations that are more similar to those observed with functional magnetic resonance imaging (fMRI). This analysis performed at rest and while watching a movie provides some interesting and novel insights into how these networks are configured in resting and active brains."

Understanding how brain networks function is important for better diagnosis and treatment of brain injuries, according to Corbetta.

The study appears online in Neuron.

Researchers know of several resting-state brain networks, which are groups of different brain regions whose activity levels rise and fall in sync when the brain is at rest. Scientists used fMRI to locate and characterize these networks, but the relative slowness of this approach limited their observations to activity that changes every 10 seconds or so. A surprising result from fMRI was that the spatial pattern of activity (or topography) of these brain networks is similar at rest and during tasks.

In contrast, a faster technology called magnetoencephalography (MEG) can detect activity at the millisecond level, letting scientists examine waves of activity in frequencies from slow (0.1-4 cycles per second) to fast (greater than 50 cycles per second).

"Interestingly, even when we looked at much higher temporal resolution, brain networks appear to fluctuate on a relatively slow time scale," said first author Viviana Betti, PhD, a postdoctoral researcher at Chieti. "However, when the subjects went from resting to watching a movie, the networks appeared to shift the frequency channels in which they operate, suggesting that the brain uses different frequencies for rest and task, much like a radio."

In the study, the scientists asked one group of volunteers to either rest or watch the movie during brain scans. A second group was asked to watch the movie and look for event boundaries, moments when the plot or characters or other elements of the story changed. They pushed a button when they noticed these changes.

As in previous studies, most subjects recognized similar event boundaries in the movie. The MEG scans showed that the communication between regions in the visual cortex was altered near the movie boundaries, especially in networks in the visual cortex.

"This gives us a hint of how cognitive activity dynamically changes the resting-state networks," Corbetta said. "Activity locks and unlocks in these networks depending on how the task unfolds. Future studies will need to track resting-state networks in different tasks to see how correlated activity is dynamically coordinated across the brain."

This research was funded by the European Community's Seventh Framework Programme Grant Agreement HEALTH-F2-2008-200728 (BrainSynch) and by the Human Connectome Project (1U54MH091657-01). V.B. was additionally supported by a fellowship from the University of Chieti. M.C. was supported by R01 MH096482-01 (NIMH) and 5R01HD061117-08 (NICHD). Betti V, Della Penna S, de Pasquale F, Mantini D, Marzetti L, Romani GL, Corbetta M. Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in the Human Brain. Neuron, published online.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. The original article was written by Michael C. Purdy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Viviana Betti, Stefania DellaPenna, Francesco dePasquale, Dante Mantini, Laura Marzetti, GianLuca Romani, Maurizio Corbetta. Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in the Human Brain. Neuron, 2013; DOI: 10.1016/j.neuron.2013.06.022

Cite This Page:

Washington University School of Medicine. "Speedier scans reveal new distinctions in resting and active brain." ScienceDaily. ScienceDaily, 1 August 2013. <www.sciencedaily.com/releases/2013/08/130801180444.htm>.
Washington University School of Medicine. (2013, August 1). Speedier scans reveal new distinctions in resting and active brain. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2013/08/130801180444.htm
Washington University School of Medicine. "Speedier scans reveal new distinctions in resting and active brain." ScienceDaily. www.sciencedaily.com/releases/2013/08/130801180444.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
You Don't Have To Be Alcohol Dependent To Need Treatment

You Don't Have To Be Alcohol Dependent To Need Treatment

Newsy (Nov. 21, 2014) A study by the Centers for Disease Control and Prevention found 9 out of 10 excessive drinkers in the country are not alcohol dependent. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins