Featured Research

from universities, journals, and other organizations

Necrostatin-1 counteracts aluminum's neurotoxic effects

Date:
August 2, 2013
Source:
IOS Press BV
Summary:
Researchers have linked aluminum accumulation in the brain as a possible contributing factor to neurodegenerative disorders such as Alzheimer's disease. A new study sheds light on the mechanism underlying aluminum-induced neuronal cell death and identifies necrostatin-1 as a substance which counteracts several of aluminum's neurotoxic effects.

Investigators have linked aluminum accumulation in the brain as a possible contributing factor to neurodegenerative disorders such as Alzheimer's disease. A new study published in Restorative Neurology and Neuroscience sheds light on the mechanism underlying aluminum-induced neuronal cell death and identifies necrostatin-1 as a substance which counteracts several of aluminum's neurotoxic effects.

Researchers have long focused on why neurons die in degenerative diseases. One process is apoptosis, a form of gene-directed programmed cell death which removes unnecessary, aged, or damaged cells. When neurons die as a result of stroke, trauma, or other insult, the process is known as necrosis. Recently, a new type of necrosis, necroptosis (programmed necrosis), has been implicated in the cell demise process. In this report, the results of several experiments support the hypothesis that aluminum-induced neuronal cell death is, to a large extent, due to necroptosis, says lead investigator Qinli Zhang, PhD, of the Department of Occupational Health, Ministry of Education Key Laboratory, School of Public Health of Shanxi Medical University in Taiyuan China.

For instance, when aluminum was added to mouse cortical neurons grown in cell culture, the cells began to die. By adding inhibitors of apoptosis (zVAD-fmk), of autophagy (3-methyladenin, 3-MA), or of necroptosis (necrostatin-1, Nec-1), investigators showed that all treatments enhanced cell viability although Nec-1 demonstrated the strongest protection. Using fluorescent microscopy, in which surviving neural cells stain green, apoptotic cells stain orange, and necrotic cells stain red, the investigators demonstrated Al-induced cell death as well as dose-dependent reduction of necroptosis with Nec-1.

When aluminum was injected into the cerebral ventricles of living mice, brain tissue analysis revealed shrunken and abnormal-looking neurons. When Nec-1 was injected simultaneously with aluminum into the ventricles, more surviving neurons could be seen, especially when higher doses of Nec-1 were used. When the investigators measured cell death-related proteins in the brain, a marker protein of necroptosis known as RIP1 showed the most changes, compared to marker proteins of apoptosis or autophagy. Similar findings were found for Alzheimer-related proteins: aluminum exposure increased the expression of mGluR2, mGluR5, Aβ, and Tau levels while Nec-1 treatment resulted in dose-dependent reductions of these protein levels.

Noting that "progressive cell loss in specific neuronal populations associated with typical learning and memory dysfunction is a pathological hallmark of neurodegenerative disorders, especially in AD," principal investigator Qiao Niu, MD, PhD, Director, Department of Occupational Health and Director, Institute of Preventive Medicine, Shanxi Medical University, and the team evaluated learning and memory in mice using the Morris Water Maze test. Al-treated mice performed poorly on the test and performance significantly improved if the mice were treated with Nec-1. Interestingly, if Nec-1 treatment was delayed for 2, 4, or 8 hours after the aluminum was introduced, Nec-1 had a protective effect less than simultaneous administration. Impaired cognitive performance was also correlated with reduced mGluR2 and mGluR5 protein in the cortex. "Nec-1, in addition to its use as a therapeutic agent for cell death, might therefore be of use in slowing the progression of the cognitive deficits associated with neuronal degeneration," says Dr. Niu.

The study demonstrates that Nec-1 may be useful for future prevention of and therapy for neurodegenerative disorders.


Story Source:

The above story is based on materials provided by IOS Press BV. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhang Qinli, Li Meiqing, Jiao Xia, Xu Li, Guo Weili, Ji Xiuliang, Ji Junwei, Yang Hailan, Zhang Ce and Niu Qiao. Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure. Restorative Neurology and Neuroscience, 2013; DOI: 10.3233/RNN-120304

Cite This Page:

IOS Press BV. "Necrostatin-1 counteracts aluminum's neurotoxic effects." ScienceDaily. ScienceDaily, 2 August 2013. <www.sciencedaily.com/releases/2013/08/130802094852.htm>.
IOS Press BV. (2013, August 2). Necrostatin-1 counteracts aluminum's neurotoxic effects. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/08/130802094852.htm
IOS Press BV. "Necrostatin-1 counteracts aluminum's neurotoxic effects." ScienceDaily. www.sciencedaily.com/releases/2013/08/130802094852.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins