Featured Research

from universities, journals, and other organizations

Building better brain implants: The challenge of longevity

Date:
August 20, 2013
Source:
Journal of Visualized Experiments (JOVE)
Summary:
A new technique accommodates two challenges inherent in brain-implantation technology: gauging the property changes that occur during implantation and measuring them on a micro-scale.

In this experiment, we describe a method for environmentally-controlled microtensile testing of mechanically-adaptive polymer nanocomposites for ex-vivo characterization.
Credit: The Journal of Visualized Experiments

On August 20, JoVE, the Journal of Visualized Experiments will publish a technique from the Capadona Lab at Case Western Reserve University to accommodate two challenges inherent in brain-implantation technology, gauging the property changes that occur during implantation and measuring on a micro-scale. These new techniques open the doors for solving a great challenge for bioengineers -- crafting a device that can withstand the physiological conditions in the brain for the long-term.

"We created an instrument to measure the mechanical properties of micro-scale biomedical implants, after being explanted from living animals," explained the lab's principal investigator, Dr. Jeffrey R. Capadona. By preserving the changing properties that occurred during implantation even after removal, the technique offers potential to create and test new materials for brain implant devices. It could result in producing longer lasting and better suited devices for the highly-tailored functions.

For implanted devices, withstanding the high-temperatures, moisture, and other in-vivo properties poses a challenge to longevity. Resulting changes in stiffness, etc, of an implanted material can trigger a greater inflammatory response. "Often, the body's reaction to those implants causes the device to prematurely fail," says Dr. Capadona, "In some cases, the patient requires regular brain surgery to replace or revise the implants."

New implantation materials may help find solutions to restore motor function in individuals who have suffered from spinal cord injuries, stroke or multiple sclerosis. "Microelectrodes embedded chronically in the brain could hold promise for using neural activity to restore motor function in individuals who have, suffered from spinal cord injuries," said Dr. Capadona.

Furthermore, Capadona and his colleagues' method allows for measurement of mechanical properties using microsize scales. Previous methods typically require large or nano-sized samples of material, and data has to be scaled, which doesn't always work.

When asked why Dr. Capadona and his colleagues published their methods with JoVE, he responded "We choose JoVE because of the novel format to show readers visually what we are doing. If a picture is worth [a] thousand words, a video is worth a million."


Story Source:

The above story is based on materials provided by Journal of Visualized Experiments (JOVE). Note: Materials may be edited for content and length.


Journal Reference:

  1. Allison E. Hess, Kelsey A. Potter, Dustin J. Tyler, Christian A. Zorman, Jeffrey R. Capadona. Environmentally-controlled Microtensile Testing of Mechanically-adaptive Polymer Nanocomposites for ex vivo Characterization. Journal of Visualized Experiments, 2013; (78) DOI: 10.3791/50078

Cite This Page:

Journal of Visualized Experiments (JOVE). "Building better brain implants: The challenge of longevity." ScienceDaily. ScienceDaily, 20 August 2013. <www.sciencedaily.com/releases/2013/08/130820094418.htm>.
Journal of Visualized Experiments (JOVE). (2013, August 20). Building better brain implants: The challenge of longevity. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/08/130820094418.htm
Journal of Visualized Experiments (JOVE). "Building better brain implants: The challenge of longevity." ScienceDaily. www.sciencedaily.com/releases/2013/08/130820094418.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins