Featured Research

from universities, journals, and other organizations

A new role for sodium in the brain

Date:
August 20, 2013
Source:
McGill University
Summary:
Researchers have found that sodium – the main chemical component in table salt – is a unique “on/off” switch for a major neurotransmitter receptor in the brain. This receptor, known as the kainate receptor, is fundamental for normal brain function and is implicated in numerous diseases, such as epilepsy and neuropathic pain.

Researchers at McGill University have found that sodium -- the main chemical component in table salt -- is a unique "on/off" switch for a major neurotransmitter receptor in the brain. This receptor, known as the kainate receptor, is fundamental for normal brain function and is implicated in numerous diseases, such as epilepsy and neuropathic pain.

Related Articles


Prof. Derek Bowie and his laboratory in McGill's Department of Pharmacology and Therapeutics, worked with University of Oxford researchers to make the discovery. By offering a different view of how the brain transmits information, their research highlights a new target for drug development. The findings are published in the journal Nature Structural & Molecular Biology.

Balancing kainate receptor activity is the key to maintaining normal brain function. For example, in epilepsy, kainate activity is thought to be excessive. Thus, drugs which would shut down this activity are expected to be beneficial.

"It has been assumed for decades that the "on/off" switch for all brain receptors lies where the neurotransmitter binds," says Prof. Bowie, who also holds a Canada Research Chair in Receptor Pharmacology. "However, we found a completely separate site that binds individual atoms of sodium and controls when kainate receptors get turned on and off."

The sodium switch is unique to kainate receptors, which means that drugs designed to stimulate this switch, should not act elsewhere in the brain. This would be a major step forward, since drugs often affect many locations, in addition to those they were intended to act on, producing negative side-effects as a result. These so called "off-target effects" for drugs represent one of the greatest challenges facing modern medicine.

"Now that we know how to stimulate kainate receptors, we should be able to design drugs to essentially switch them off," says Dr. Bowie.

Dr. Philip Biggin's lab at Oxford University used computer simulations to predict how the presence or absence of sodium would affect the kainate receptor.

The research was made possible in part thanks to a grant from The Brain@McGill, a partnership between Oxford University, Neuroscience Center Zurich (ZNZ) and McGill aimed at enhancing research collaborations in neuroscience.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. G Brent Dawe, Maria Musgaard, Elizabeth D Andrews, Bryan A Daniels, Mark R P Aurousseau, Philip C Biggin, Derek Bowie. Defining the structural relationship between kainate-receptor deactivation and desensitization. Nature Structural & Molecular Biology, 2013; DOI: 10.1038/nsmb.2654

Cite This Page:

McGill University. "A new role for sodium in the brain." ScienceDaily. ScienceDaily, 20 August 2013. <www.sciencedaily.com/releases/2013/08/130820113931.htm>.
McGill University. (2013, August 20). A new role for sodium in the brain. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2013/08/130820113931.htm
McGill University. "A new role for sodium in the brain." ScienceDaily. www.sciencedaily.com/releases/2013/08/130820113931.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
100-Year-Old Woman Sees Ocean for First Time

100-Year-Old Woman Sees Ocean for First Time

AP (Nov. 20, 2014) Ruby Holt spent most of her 100 years on a farm in rural Tennessee, picking cotton and raising four children. She saw the ocean for the first time thanks to her assisted living center and a group that grants wishes to the elderly. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Kids React to Lammily, The Realistic Barbie Alternative

Kids React to Lammily, The Realistic Barbie Alternative

Buzz60 (Nov. 19, 2014) Artist Nickolay Lamm's Kickstarter-funded Lammily doll, based on his 'What Would Barbie Look Like as a Real Woman' project, is finally available to buy. Jen Markham explains how the doll's realistic proportions are going over with a test group of second-graders who are used to the impossible measurements of Barbie dolls. Video provided by Buzz60
Powered by NewsLook.com
Trans-Fat Foods Now Linked To Poor Memory

Trans-Fat Foods Now Linked To Poor Memory

Newsy (Nov. 19, 2014) A study presented at the American Heart Association Scientific Sessions shows a link between diets high in trans fats and decreased memory recall. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins