Featured Research

from universities, journals, and other organizations

Morphing manganese: New discovery alters understanding of chemistry that moves elements through natural world

Date:
August 22, 2013
Source:
University of Delaware
Summary:
An often-overlooked form of manganese, an element critical to many life processes, is far more prevalent in ocean environments than previously known, according to a new study. The discovery alters understanding of the chemistry that moves manganese and other elements, like oxygen and carbon, through the natural world. Manganese is an essential nutrient for most organisms and helps plants produce oxygen during photosynthesis.

This image shows a sediment sample from the Gulf of Saint Lawrence.
Credit: George Luther, University of Delaware

An often-overlooked form of manganese, an element critical to many life processes, is far more prevalent in ocean environments than previously known, according to a study led by University of Delaware researchers that was published this week in Science.

Related Articles


The discovery alters understanding of the chemistry that moves manganese and other elements, like oxygen and carbon, through the natural world. Manganese is an essential nutrient for most organisms and helps plants produce oxygen during photosynthesis.

"You wouldn't think manganese is that important, but without manganese, we wouldn't have the molecular oxygen that we breathe," said study co-author George Luther, Maxwell P. and Mildred H. Harrington Professor of Oceanography in the School of Marine Science and Policy within UD's College of Earth, Ocean, and Environment.

Manganese is present in the environment in three forms -- manganese(II), manganese(III) and manganese(IV) -- the difference related to the oxidation state, or number of electrons present. When elements lose or gain an electron, the oxidation state changes in a "redox reaction," like when iron turns into rust by losing electrons to oxygen in air.

The second-most common metal in Earth's crust, manganese rapidly changes between oxidation states while reacting with other elements in the environment.

Traditionally, manganese(II) and manganese(IV) were believed to be the dominant forms in aquatic environments. But in the mid-2000s, Luther found in a surprising result that manganese(III) was also present in a Black Sea "transition zone," an area where oxygen levels are relatively high near the surface but gradually diminish deeper down in the water.

Suspecting that this intermediary form was far more widespread than the somewhat unique conditions of the Black Sea, he and his Canadian colleagues Bjørn Sundby of the University of Quebec at Rimouski and Al Mucci of McGill University, whom he has worked with more than 20 years, set out for the largest estuary in the world: the Gulf of Saint Lawrence off the southeast corner of Canada.

There they pulled up samples of mud from the seafloor, where in the top few inches of sediment, there is also a transition zone of diminishing oxygen amounts. Andrew Madison, lead author on the Science paper and Luther's former graduate student, used a new technique to differentiate between manganese forms.

"It was a bit frustrating, and I spent about two and a half years working through methodological challenges and complications," said Madison, who finished his doctorate last year and now works as geochemist at Golder Associates Inc. in New Jersey. "But it was also pretty rewarding when I finally got something to work."

His results showed that manganese(III) comprised up to 90 percent of the total manganese present in the Canadian study sites. The implication is that the metal is found in other marine environments where there is a gradation of oxygen concentrations, whether in the water column of the Black Sea, sediment in the Gulf of Lawrence or a Delaware salt marsh.

"We saw it all through the Saint Laurentian Estuary where we studied," Luther said. "We did some work in a local salt marsh and found it. Wherever we've been able to look for it, we've found it. By implication, it should be found in all ocean sediments."

The findings help explain anomalies in manganese models that have puzzled scientists. Other researchers studying manganese did not make specific measurements for manganese(II) versus manganese(III), Luther said. Rather, they measured total dissolved manganese and assumed it was the former.

This missing link in the manganese cycle may shed light on the complex connections between the biology, geology and chemistry -- called biogeochemistry -- in ocean environments.

The biogeochemistry of marine sediments revolves around organic matter, like bits of dead algae, that fall through the water to the bottom of the ocean. Bacteria consume that debris, setting off a chain of reactions.

"In sediments, bacteria prefer to consume molecular oxygen and nitrate first due to their high energy gain," Madison said. "After those are consumed, bacteria then couple organic matter oxidation to manganese oxide reduction, which can produce soluble manganese(III)."

In their paper, the researchers call for the conceptual model of the sedimentary redox cycle to be revised to include dissolved manganese(III).

"Manganese is helpful to produce organic matter in the surface waters through photosynthesis," Luther said. "But in the sediments, the higher oxidation state manganese is used to decompose organic matter. So it's a really interesting cycle."

Luther, his students and his Oregon Health & Science University collaborator, Brad Tebo, plan to return to Canada to continue work on the microbiology and chemistry of the processes, hopefully to find out which organisms are helping the manganese oxidation process.


Story Source:

The above story is based on materials provided by University of Delaware. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. S. Madison, B. M. Tebo, A. Mucci, B. Sundby, G. W. Luther. Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System. Science, 2013; 341 (6148): 875 DOI: 10.1126/science.1241396

Cite This Page:

University of Delaware. "Morphing manganese: New discovery alters understanding of chemistry that moves elements through natural world." ScienceDaily. ScienceDaily, 22 August 2013. <www.sciencedaily.com/releases/2013/08/130822142211.htm>.
University of Delaware. (2013, August 22). Morphing manganese: New discovery alters understanding of chemistry that moves elements through natural world. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/08/130822142211.htm
University of Delaware. "Morphing manganese: New discovery alters understanding of chemistry that moves elements through natural world." ScienceDaily. www.sciencedaily.com/releases/2013/08/130822142211.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins