Featured Research

from universities, journals, and other organizations

New study supports intracerebral injections of bone marrow-derived stem cells to prevent or reduce post-stroke cognitive deficits

Date:
August 26, 2013
Source:
IOS Press BV
Summary:
Cognitive deficits following ischemic stroke are common and debilitating, even in the relatively few patients who are treated expeditiously so that clots are removed or dissolved rapidly and cerebral blood flow restored. A new study demonstrates that intracerebral injection of bone-marrow-derived mesenchymal stem cells (BSCs) reduces cognitive deficits produced by temporary occlusion of cerebral blood vessels in a rat model of stroke, suggesting that BSCs may offer a new approach for reducing post-stroke cognitive dysfunction.

Cognitive deficits following ischemic stroke are common and debilitating, even in the relatively few patients who are treated expeditiously so that clots are removed or dissolved rapidly and cerebral blood flow restored. A new study in Restorative Neurology and Neuroscience demonstrates that intracerebral injection of bone-marrow-derived mesenchymal stem cells (BSCs) reduces cognitive deficits produced by temporary occlusion of cerebral blood vessels in a rat model of stroke, suggesting that BSCs may offer a new approach for reducing post-stroke cognitive dysfunction.

According to the American Heart Association, almost half of ischemic stroke survivors older than 65 years of age experience cognitive deficits, contributing to functional impairments, dependence, and increased mortality. The incidence of cognitive deficits triples after stroke and about one quarter of cognitively impaired stroke patients' progress to dementia. For these reasons, "there is an underlying need for restorative therapies," says lead investigator Gary L. Dunbar, PhD, of the Field Neurosciences Institute Laboratory for Restorative Neurology, and Director of the Central Michigan University Program in Neuroscience.

In order to see whether mesenchymal stem cells derived from bone marrow could attenuate or prevent cognitive problems following a stroke-like ischemic event, the investigators mimicked stroke in rats by injecting the hormone endothelin-1 (ET-1) directly into the brain in order to constrict nearby blood vessels and block blood flow temporarily. Control animals underwent similar surgery but were injected with saline, not ET-1.

Seven days after the "stroke," some of the rats received intrastriatal injections of BSC, while others received control injections. Cognition was evaluated using a spatial operant reversal task (SORT), in which the animals were trained to press a lever a certain number of times when it was illuminated to receive a food reward.

The investigators found that animals that underwent a stroke but were then injected with BSC made significantly fewer incorrect lever presses than stroke rats who received control injections. In fact, the BSC-treated stroke animals performed as well as those who did not have a stroke. "Importantly, there were no significant between-group differences in the total number of lever presses, indicating the deficits observed were cognitive, rather than motor in nature," said Dr. Dunbar. No differences were observed in infarct size between the BSC-treated and control groups.

The authors emphasize that the BSCs were effective even when transplanted seven days after the induced stroke, a finding that offers hope to patients who may not present for treatment immediately. The authors suggest that BSCs may work by creating a microenvironment that provides trophic support to remaining viable cells, perhaps by releasing substances such as brain-derived neurotrophic factor (BDNF).


Story Source:

The above story is based on materials provided by IOS Press BV. Note: Materials may be edited for content and length.


Journal Reference:

  1. SA Lowrance, KD Fink, A Crane, J Matyas, ND Dey, JJ Matchynski, T Thibo, T Reinke, J Kippe, C Hoffman, M Sandstrom, J Rossignol, and GL Dunbar. Bone-marrow-derived mesenchymal stem cells attenuate cognitive deficits in an endothelin-1 rat model of stroke. Restorative Neurology and Neuroscience, 2013 DOI: 10.3233/RNN-130329

Cite This Page:

IOS Press BV. "New study supports intracerebral injections of bone marrow-derived stem cells to prevent or reduce post-stroke cognitive deficits." ScienceDaily. ScienceDaily, 26 August 2013. <www.sciencedaily.com/releases/2013/08/130826095829.htm>.
IOS Press BV. (2013, August 26). New study supports intracerebral injections of bone marrow-derived stem cells to prevent or reduce post-stroke cognitive deficits. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/08/130826095829.htm
IOS Press BV. "New study supports intracerebral injections of bone marrow-derived stem cells to prevent or reduce post-stroke cognitive deficits." ScienceDaily. www.sciencedaily.com/releases/2013/08/130826095829.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins