Featured Research

from universities, journals, and other organizations

Carbon-sequestering ocean plants may cope with climate changes over the long run

Date:
August 26, 2013
Source:
San Francisco State University
Summary:
A year-long experiment on tiny ocean organisms called coccolithophores suggests that the single-celled algae may still be able to grow their calcified shells even as oceans grow warmer and more acidic in Earth's near future. The study stands in contrast to earlier studies suggesting that coccolithophores would fail to build strong shells in acidic waters.

This is an image of the coccolithophore, Emiliania huxleyi, taken by lead author Ina Benner using the San Francisco State University FE-Scanning Electron Microscope.
Credit: Ina Benner

A year-long experiment on tiny ocean organisms called coccolithophores suggests that the single-celled algae may still be able to grow their calcified shells even as oceans grow warmer and more acidic in Earth's near future.

The study stands in contrast to earlier studies suggesting that coccolithophores would fail to build strong shells in acidic waters. The world's oceans are expected to become more acidic as human activities pump increasing amounts of carbon dioxide into Earth's atmosphere.

But after the researchers raised one strain of the Emiliania huxleyi coccolithorphore for over 700 generations, which took about 12 months, under high temperature and acidified conditions that are expected for the oceans 100 years from now, the organisms had no trouble producing their plated shells.

"At least in this experiment with one coccolithophore strain, when we combined higher levels of CO2 with higher temperatures, they actually did better in terms of calcification." said Jonathon Stillman, associate professor of biology at San Francisco State University, who along with Ed Carpenter, professor of biology, and Tomoko Komada, associate professor of chemistry, led a team of researchers at the University's Romberg Tiburon Center for Environmental Studies. The research was performed by postdoctoral scientist Ina Benner, masters students Rachel Diner and Dian Li and postdoctoral scientist Stephane Lefebvre.

Coccolithophores sequester oceanic carbon by incorporating it into their shells, which provide ballast to speed the sinking of carbon to the deep sea. These little organisms are central to the global carbon cycle, a role that could be disrupted if rising levels of atmospheric carbon dioxide and warming temperatures interfere with their ability to grow their calcified shells.

In previous experiments, the same SF State researchers found that the same strain of coccolithophores grown for hundreds of generations under cool and acidified water conditions grew less shell than those growing under current ocean conditions. In a short-term study by other researchers that examined the combined effects of higher temperatures and acidification, the same strain also had smaller shells under warmer and acidified conditions. However, results from this new long-term experiment suggest that this strain of coccolithophores may have the capacity to adapt to warmer and more acidic seas if given adequate time.

Stillman said the study underscores the importance of assessing multiple climactic factors and their impact on these organisms over a long time, to understand how they may cope with future oceanic environmental changes.

"We don't know why some strains might calcify more in the future, when others might calcify less," he said. Recent evidence indicates that the genetic diversity among coccolithophores in nature may hold part of the answer as to which strains and species might be "pre-adapted for future ocean conditions," Stillman added.

While these results indicate that coccolithophore calcification might increase under future ocean conditions, the researchers say that it's still unclear "whether, or how, such changes might affect carbon export to the deep sea."

The researchers received another surprise when they used recently developed genomic approaches to compare the expression of genes related to calcification in coccolithophores grown under current and future seawater conditions. "We really expected to see a lot of genes known to be involved in calcification to change significantly in the cells that thrived under high temperature and high acidity," Stillman said, "given their increased levels of calcification."

But the researchers found no significant changes in the expression of genes known to be involved in calcification from prior studies comparing strains with dramatically different calcification levels. It could be that these genes work as a sort of "on-off switch" for calcification, Stillman suggested. There may be other genes at work that control calcification in more subtle ways, affecting the degree of calcification.


Story Source:

The above story is based on materials provided by San Francisco State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ina Benner, Rachel E. Diner, Stephane C. Lefebvre, Dian Li, Tomoko Komada, Edward J. Carpenter, and Jonathon H. Stillman. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Phil. Trans. R. Soc. B., 2013 DOI: 10.1098/rstb.2013.0049

Cite This Page:

San Francisco State University. "Carbon-sequestering ocean plants may cope with climate changes over the long run." ScienceDaily. ScienceDaily, 26 August 2013. <www.sciencedaily.com/releases/2013/08/130826100118.htm>.
San Francisco State University. (2013, August 26). Carbon-sequestering ocean plants may cope with climate changes over the long run. ScienceDaily. Retrieved September 24, 2014 from www.sciencedaily.com/releases/2013/08/130826100118.htm
San Francisco State University. "Carbon-sequestering ocean plants may cope with climate changes over the long run." ScienceDaily. www.sciencedaily.com/releases/2013/08/130826100118.htm (accessed September 24, 2014).

Share This



More Earth & Climate News

Wednesday, September 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: No Nation Gets Pass on Climate Change

Obama: No Nation Gets Pass on Climate Change

AP (Sep. 23, 2014) — In a forceful appeal for international cooperation on limiting carbon pollution, President Barack Obama warned world leaders at the UN Climate Summit on Tuesday that the globe's climate is changing faster than efforts to address it. (Sept. 23) Video provided by AP
Powered by NewsLook.com
Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) — Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
Raw: Protesters Stage Wall Street Climate Sit-in

Raw: Protesters Stage Wall Street Climate Sit-in

AP (Sep. 22, 2014) — A day after over 100,000 people marched against climate change, more than 1,000 activists blocked parts of Manhattan's financial district. Over 100 people, including a person wearing a white polar bear suit, were arrested Monday night. (Sept. 22) Video provided by AP
Powered by NewsLook.com
French FM Urges 'powerful' Response to Global Warming

French FM Urges 'powerful' Response to Global Warming

AFP (Sep. 22, 2014) — French Foreign Minister Laurent Fabius on Monday warned about the potential "catastrophe" if global warming was not dealt with in a "powerful" way. Duration: 01:08 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins