Featured Research

from universities, journals, and other organizations

Patent shows promise for improved method of carbon capture

Date:
August 27, 2013
Source:
University of Alabama
Summary:
New research shows a new method for capturing greenhouse gases is potentially cheaper and more energy efficient than current solvents.

Research led by Dr. Jason E. Bara shows a more efficient and cheaper method for capturing carbon dioxide.
Credit: Image courtesy of University of Alabama

An innovative method for stripping greenhouse gases such as carbon dioxide from industrial emissions is potentially cheaper and more efficient than current methods, according to a United States patent based on research by Dr. Jason E. Bara, assistant professor of chemical and biological engineering at The University of Alabama.

Related Articles


Nearly all commercially-available efforts at scrubbing greenhouse gasses, GHG's, from emissions use a liquid solution of water and amine, derived from ammonia, that contacts the stream, removing carbon dioxide, CO2, or other unwanted gases. The system patented by Bara would replace much of the water in the aqueous amine solutions with a promising class of molecules known as imidazoles, organic solvents with a low vapor pressure, or boiling point.

The patent, granted earlier in August to UA, claims the chemical make-up of the imidazole-containing systems for use in capturing CO2 and other gases from natural gas and post-combustion emissions such as those from coal-fired power plants.

"The advantages of imidazoles in carbon capture are that they are a class of solvents with tunable chemical and physical properties," Bara said. "This gives us a lot of flexibility in designing a solvent system that can meet process demands."

There are global efforts to reduce the human-made emission of GHG's that likely contribute to global warming by trapping the sun's heat inside the atmosphere, including emission standards and financial penalties on excess emissions. The most common and most studied method is introducing monoethanolamine, or MEA, into natural gas or post-combustion emissions, a process that can capture about 90 percent of CO2 from flue gas.

The use of MEA to scrub flue gas is energy intensive since recycling the solution requires boiling it to desorb, or rid, the CO2 before recycle of the MEA solution back into contact with the flue gas. The cost of the energy needed to use MEA in power plants, for example, would likely be passed onto consumers, Bara said.

Bara's work shows that swapping most of the water in the process with imidazoles saves energy since the solvent can be regenerated without the energy penalties associated with boiling large amounts of water. Bara's research shows the solvent system can capture the same or more CO2than MEA.

The cost of capturing carbon is one reason the energy industry has been reluctant to embrace carbon capture on a large scale. "That's why it is important to look at solvents and materials that are tweaks to what are already established if we hope to do very large scale up over the next decade," Bara said.

"What's really nice about this solvent system is that we're not starting from scratch," he said. "Many imidazole cores are already commercially available, and through some very simple reactions, we can synthesize the molecules we want in the lab. This should bode well in terms of solvent cost if we were to scale them up."

This technology has been licensed to the clean tech company ION Engineering in Boulder, Colo., with the hope of further developing this technology for carbon dioxide capture. Bara helped found ION Engineering, and continues as a science adviser with the company.

Bara's research is funded by the U.S. Department of Energy, the National Science Foundation and the American Chemical Society Petroleum Research Fund.

Other patents based from Bara's work with imidazoles are pending. U.S. Patent Designated No. 8,506,914 was granted Aug. 13.


Story Source:

The above story is based on materials provided by University of Alabama. Note: Materials may be edited for content and length.


Cite This Page:

University of Alabama. "Patent shows promise for improved method of carbon capture." ScienceDaily. ScienceDaily, 27 August 2013. <www.sciencedaily.com/releases/2013/08/130827160258.htm>.
University of Alabama. (2013, August 27). Patent shows promise for improved method of carbon capture. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2013/08/130827160258.htm
University of Alabama. "Patent shows promise for improved method of carbon capture." ScienceDaily. www.sciencedaily.com/releases/2013/08/130827160258.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins