Featured Research

from universities, journals, and other organizations

Finally mapped: The brain region that distinguishes bits from bounty

Date:
September 5, 2013
Source:
American Association for the Advancement of Science
Summary:
In comparing amounts of things -- be it the grains of sand on a beach, or the size of a sea gull flock inhabiting it -- humans use a part of the brain that is organized topographically, researchers have finally shown. In other words, the neurons that work to make this "numerosity" assessment are laid out in a shape that allows those most closely related to communicate and interact over the shortest possible distance.

In comparing amounts of things -- be it the grains of sand on a beach, or the size of a sea gull flock inhabiting it -- humans use a part of the brain that is organized topographically, researchers have finally shown. In other words, the neurons that work to make this "numerosity" assessment are laid out in a shape that allows those most closely related to communicate and interact over the shortest possible distance.

This layout, referred to as a topographical map, is characteristic of all primary senses -- sight, hearing, touch, smell and taste -- and scientists have long assumed that numerosity, while not a primary sense (but perceived similarly to one), might be characterized by such a map, too.

But they have not been able to find it, which has caused some doubt in the field as to whether a map for numerosity exists.

Now, however, Utrecht University's Benjamin Harvey, along with his colleagues, have sussed out signals that illustrate the hypothesized numerosity map is real.

Numerosity, it is important to note, is distinct from symbolic numbers. "We use symbolic numbers to represent numerosity and other aspects of magnitude, but the symbol itself is only a representation," Harvey said. He went on to explain that numerosity selectivity in the brain is derived from visual processing of image features, where symbolic number selectivity is derived by recognizing the shapes of numerals, written words, and linguistic sounds that represent numbers. "This latter task relies on very different parts of the brain that specialize in written and spoken language."

Understanding whether the brain's processing of numerosity and symbolic numbers is related, as we might be tempted to think, is just one area that will be better informed by Harvey's new map.

To uncover it, he and his colleagues asked eight adult study participants to look at patterns of dots that varied in number over time, all the while analysing the neural response properties in a numerosity-linked part of their brain using high-field fMRI (functional magnetic resonance imaging). Use of this advanced neuroimaging method allowed them to scan the subjects for far fewer hours per sitting than would have been required with a less powerful scanning technology.

With the fMRI data that resulted, Harvey and his team used population receptive field modelling, which aims to measure neural response as directly and quantitatively as possible. "This was the key to our success," Harvey said. It allowed the researchers to model the human fMRI response properties they observed following results of recordings from macaque neurons, in which numerosity experiments had been conducted more extensively.

Their efforts revealed a topographical layout of numerosity in the human brain; the small quantities of dots the participants observed were encoded by neurons in one part of the brain, and the larger quantities, in another.

This finding demonstrates that topography can emerge not just for lower-level cognitive functions, like the primary senses, but for higher-level cognitive functions, too.

"We are very excited that association cortex can produce emergent topographic structures," Harvey said.

Because scientists know a great deal about topographical maps (and have the tools to probe them), the work of Harvey et al. may help scientists better analyse the neural computation underlying number processing.

"We believe this will lead to a much more complete understanding of humans' unique numerical and mathematical skills," Harvey said.

Having heard from others in the field about the difficulty associated with the hunt for a topographical map of numerosity, Harvey and colleagues were surprised to obtain the results they did.

They also found the variations between their subjects interesting.

"Every individual brain is a complex and very different system," Harvey explained. "I was very surprised then that the map we report is in such a consistent location between our subjects, and that numerosity preferences always increased in the same direction along the cortex."

"On the other hand," he continued, "the extent of individual differences … is also striking." Harvey explained that understanding the consequences of these differences for their subjects' perception or task performance will require further study.

This work was supported by NWO Vidi grant #452.08.008.


Story Source:

The above story is based on materials provided by American Association for the Advancement of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. M. Harvey, B. P. Klein, N. Petridou, S. O. Dumoulin. Topographic Representation of Numerosity in the Human Parietal Cortex. Science, 2013; 341 (6150): 1123 DOI: 10.1126/science.1239052

Cite This Page:

American Association for the Advancement of Science. "Finally mapped: The brain region that distinguishes bits from bounty." ScienceDaily. ScienceDaily, 5 September 2013. <www.sciencedaily.com/releases/2013/09/130905142800.htm>.
American Association for the Advancement of Science. (2013, September 5). Finally mapped: The brain region that distinguishes bits from bounty. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/09/130905142800.htm
American Association for the Advancement of Science. "Finally mapped: The brain region that distinguishes bits from bounty." ScienceDaily. www.sciencedaily.com/releases/2013/09/130905142800.htm (accessed August 23, 2014).

Share This




More Mind & Brain News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins