Featured Research

from universities, journals, and other organizations

Essential genetic mechanism of cerebral cortex development discovered

Date:
September 19, 2013
Source:
Libre de Bruxelles, Université
Summary:
The cerebral cortex is the most complex and vital structure in our brain. It is the nerve centre for those “higher” functions that characterize our species, such as language and abstract thought. The nerve cells – or neurons – which comprise the cortex are key elements in ensuring its functions effectively. They are also targeted by numerous neurological and psychiatric illnesses, such as epilepsy, autism, and Alzheimer's.

The cerebral cortex is the most complex and vital structure in our brain. It is the nerve centre for those "higher" functions that characterise our species, such as language and abstract thought. The nerve cells -- or neurons -- which comprise the cortex are key elements in ensuring its functions effectively. They are also targeted by numerous neurological and psychiatric illnesses (epilepsy, autism, Alzheimer´s).

Specifically, the complex functions of the cortex depend upon the precise alignment of nerve cells or neurons, which are arranged in "layers" and "columns". This precise structure provides the fundamental basis for cortical functions. Nerve cells are arranged in layers and columns during embryonic development. If the process is disrupted, various illnesses can occur (epilepsy, mental retardation and especially autistic syndromes). Whilst there is an increasing understanding of the mechanisms involved in the construction of cortical layers, those that control the formation of the columns remain a mystery.

The work of a research team, led by Pierre Vanderhaeghen and Jordane Dimidschstein (ULB, WELBIO, IRIBHM and the ULB Neuroscience Institute (UNI)), offers new perspectives on the cortical structure´s development. The team discovered a mechanism underlying the arrangement of cortical neurons in columns. This work is to be published on 18 September 2013 in the journal Neuron1.

Using the mouse cerebral cortex as a model, researchers at the Université libre de Bruxelles (ULB, School of Medicine) initially discovered that a nerve cell signalling factor, called ephrin-B1, can act as a guide, helping nerve cells from the cortex to form columns. The researchers subsequently observed that the ephrin-B1 signal acts at a very early stage in embryonic development, when the newly-produced cortical nerve cells actively move throughout the brain to reach the cerebral cortex. The researchers made the interesting finding that it is the level of ephrin signal that influences the way in which cells are arranged in a columnar fashion. An increase in the ephriB signal will force the nerve cells to migrate in a "tight formation," which makes the cortical columns narrower. A reduction in the ephrin-B signal, on the other hand, will enable nerve cells to migrate more broadly, thus producing more sparsely-grouped columns.

These advances have significant implications. On a fundamental level, this research will enable us to gain a greater understanding of an essential, yet little known, aspect of cortex development: the construction of the cortical columns. Cortical column anomalies were reported in several different neurological and psychiatric diseases. Identifying genes involved in this process thus offers new perspectives for improving our understanding of these conditions.


Story Source:

The above story is based on materials provided by Libre de Bruxelles, Université. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jordane Dimidschstein, Lara Passante, Audrey Dufour, Jelle van den Ameele, Luca Tiberi, Tatyana Hrechdakian, Ralf Adams, Rüdiger Klein, Dieter Chichung Lie, Yves Jossin, Pierre Vanderhaeghen. Ephrin-B1 Controls the Columnar Distribution of Cortical Pyramidal Neurons by Restricting Their Tangential Migration. Neuron, 2013; 79 (6): 1123 DOI: 10.1016/j.neuron.2013.07.015

Cite This Page:

Libre de Bruxelles, Université. "Essential genetic mechanism of cerebral cortex development discovered." ScienceDaily. ScienceDaily, 19 September 2013. <www.sciencedaily.com/releases/2013/09/130919085630.htm>.
Libre de Bruxelles, Université. (2013, September 19). Essential genetic mechanism of cerebral cortex development discovered. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/09/130919085630.htm
Libre de Bruxelles, Université. "Essential genetic mechanism of cerebral cortex development discovered." ScienceDaily. www.sciencedaily.com/releases/2013/09/130919085630.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins