Featured Research

from universities, journals, and other organizations

Researchers tease apart workings of a common gene

Date:
September 19, 2013
Source:
Weill Cornell Medical College
Summary:
Researchers have discovered why a tiny alteration in a brain gene, found in 20 percent of the population, contributes to the risk for anxiety, depression and memory loss.

Researchers at Weill Cornell Medical College have discovered why a tiny alteration in a brain gene, found in 20 percent of the population, contributes to the risk for anxiety, depression and memory loss.

Their discovery, reported in Nature Communications, describes new functions for the alteration, a single nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene. This gene is a powerful regulator of the growth and function of neurons, and the establishment of brain circuitry. The common alteration occurs when a single "letter" of BDNF's genetic code is "misspelled."

The team of investigators, led by Dr. Clay Bracken, associate research professor of biochemistry and director of the nuclear magnetic resonance facility, Dr. Barbara Hempstead, professor of medicine, and Dr. Francis Lee, professor of psychiatry, all at Weill Cornell Medical College, discovered that the alteration appears to induce shrinkage of neurons from the hippocampus (an important region for memory and emotion), reducing connectivity between brain cells.

The discovery upends the prevailing theory about how the BDNF SNP alters the function of the brain, says Dr. Agustin Anastasia, first author of the article and a postdoctoral fellow in the Hempstead lab. "Research on BDNF is very active worldwide, and the conventional wisdom of the field was that the SNP reduced the amount of BDNF that was secreted. Therefore, many investigators were trying to increase production of the protein -- but this effort was only moderately successful."

"While the SNP does decrease the amount of BDNF in neurons, it generates a protein, the Met66 prodomain, that is different from the Val66 prodomain that is generated by the 80 percent of the human population that does not carry the SNP," Dr. Hempstead says. "The Met66 prodomain binds to specific proteins on the surface of neurons, to induce the pruning or shrinkage of these neurons."

The findings offer mechanistic insight into why some depression and anxiety runs in families, Dr. Lee says. "There can be a heritable component to these diseases and it makes sense that a common variant in a gene could be involved," he says. "Just like hypertension contributes to the risk for heart disease, the BDNF alteration increases the risk of depression, anxiety and memory disorders -- but is not the sole reason why they occur."

Still, targeted treatment for the genetic alteration could provide the first true benefit for affected patients, who often don't respond to traditional treatments, Dr. Lee says. "We can easily test patients for the mutation by using a simple blood test," he says. "We just need novel targeted treatments that alter the effects of the BDNF SNP -- and now we have a good lead on what that therapy should do."

The other half of the story

In 2006, Dr. Lee discovered that neuronal secretion of mutated BDNF was reduced, compared to secretion of wild-type BDNF, and generated a mouse that expressed the human BDNF SNP. That study appeared in Science. "It turns out we were only half right," Dr. Lee says. "This current study tells the rest of the story."

In the new study, the researchers used a combination of approaches to understand what the Met66 prodomain, generated by the BDNF SNP, was doing. Dr. Bracken led the structural biology work that defined the alterations in the protein that were conferred by the BDNF SNP. The team also included Drs. Katrin Deinhardt and Moses Chao, BDNF biologists and investigators from the Skirball Institute at New York University School of Medicine, who used techniques to evaluate neuronal pruning.

The team knew that BDNF is manufactured inside neurons. One part of the protein, the prodomain, was known to help guide BDNF to the surface of neurons. BDNF released from cells stimulates the growth and activity of neighboring neurons. However, little was known about the prodomain itself; it was considered a useless or inactive protein.

The researchers used a variety of methods to study what actually happened to the prodomain with both the altered BDNF (Met66 prodomain), and in wild-type BDNF (Val66 prodomain).

They developed Met66-expressing mice, which displayed many of the detrimental effects (such as anxiety and alterations in memory formation) observed in human Met66 carriers, as well as tests to identify the activity of the Met66 prodomain. The researchers used advanced nuclear magnetic resonance analysis to identify the structure of the Met66 and Val66 prodomains and their interactions, Dr. Bracken says. Human cell lines were used to define the differences in prodomain binding and identify proteins and pathways critical for pruning of neurons.

"This was an exciting collaboration," Dr. Bracken says. "A lot of research studies focus on animal models of human disease, or on biophysics, or on the biology of neurons. We combined all three investigations, which was a very powerful approach because it utilized different ways of thinking about a common problem."

They discovered what they had long suspected but had not previously been able to prove -- that the Met66 prodomain was not an inert protein, but a degenerative agent. The team found that Met66 binds and activates a protein complex (SorCS2 and p75) known to shrink neurons, reducing their ability to communicate with neighboring neurons. They also discovered that the more common Val66 prodomain did not induce neuronal shrinkage.

"This was an unexpected but very exciting result. This study describes how a single substitution in BDNF causes a structural change in Met66 prodomain to endow it with a biological function," Dr. Hempstead says.

"The brain isn't set in stone -- it wants to be able to build and rebuild, and in order to rebuild, it needs to break down neurons first. I suspect that Met66 prodomain is involved in a normal breaking-down process that involves SorC2 and p75, but in the altered BDNF, the balance is shifted in the wrong way," Dr. Lee says.

Using their Met66 mouse model, the researchers are now examining precisely what the mutation does to neurons -- "how it alters the size and length of synapses or changes the way the synapses function," Dr. Anastasia says.

And, with this Met66 mouse model, they can examine drugs that could potentially target Met66 or block the proteins it binds to. "At the end of the day, understanding how the protein is made and how it acts is the goal. This will give us insights into how we can modify the activity of the Met66 prodomain, to help patients with this alteration in BDNF who suffer from anxiety or depression," Dr. Hempstead says.


Story Source:

The above story is based on materials provided by Weill Cornell Medical College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Agustin Anastasia, Katrin Deinhardt, Moses V. Chao, Nathan E. Will, Krithi Irmady, Francis S. Lee, Barbara L. Hempstead, Clay Bracken. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3490

Cite This Page:

Weill Cornell Medical College. "Researchers tease apart workings of a common gene." ScienceDaily. ScienceDaily, 19 September 2013. <www.sciencedaily.com/releases/2013/09/130919112719.htm>.
Weill Cornell Medical College. (2013, September 19). Researchers tease apart workings of a common gene. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/09/130919112719.htm
Weill Cornell Medical College. "Researchers tease apart workings of a common gene." ScienceDaily. www.sciencedaily.com/releases/2013/09/130919112719.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins