Science News
from research organizations

Researchers identify switch that controls growth of most aggressive brain tumor cells

Date:
September 20, 2013
Source:
UT Southwestern Medical Center
Summary:
Researchers have identified a cellular switch that potentially can be turned off and on to slow down, and eventually inhibit the growth of the most commonly diagnosed and aggressive malignant brain tumor.
Share:
       
FULL STORY

Dr. Amyn Habib, associate professor of neurology and neurotherapeutics.
Credit: UT Southwestern Medical Center

Researchers at UT Southwestern Medical Center have identified a cellular switch that potentially can be turned off and on to slow down, and eventually inhibit the growth of the most commonly diagnosed and aggressive malignant brain tumor.

Findings of their investigation show that the protein RIP1 acts as a mediator of brain tumor cell survival, either protecting or destroying cells. Researchers believe that the protein, found in most glioblastomas, can be targeted to develop a drug treatment for these highly malignant brain tumors. The study was published online Aug. 22 in Cell Reports.

"Our study identifies a new mechanism involving RIP1that regulates cell division and death in glioblastomas," said senior author Dr. Amyn Habib, associate professor of neurology and neurotherapeutics at UT Southwestern, and staff neurologist at VA North Texas Health Care System. "For individuals with glioblastomas, this finding identified a target for the development of a drug treatment option that currently does not exist."

In the study, researchers used animal models to examine the interactions of the cell receptor EGFRvIII and RIP1. Both are used to activate NFκB, a family of proteins that is important to the growth of cancerous tumor cells. When RIP1 is switched off in the experimental model, NFκB and the signaling that promotes tumor growth is also inhibited. Furthermore, the findings show that RIP1 can be activated to divert cancer cells into a death mode so that they self-destruct.

According to the American Cancer Society, about 30 percent of brain tumors are gliomas, a fast-growing, treatment-resistant type of tumor that includes glioblastomas, astrocytomas, oligodendrogliomas, and ependymomas. In many cases, survival is tied to novel clinical trial treatments and research that will lead to drug development.


Story Source:

The above post is reprinted from materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vineshkumar Thidil Puliyappadamba, Sharmistha Chakraborty, Sandili S. Chauncey, Li Li, Kimmo J. Hatanpaa, Bruce Mickey, Shayan Noorani, Hui-Kuo G. Shu, Sandeep Burma, David A. Boothman, Amyn A. Habib. Opposing Effect of EGFRWT on EGFRvIII-Mediated NF-κB Activation with RIP1 as a Cell Death Switch. Cell Reports, 2013; 4 (4): 764 DOI: 10.1016/j.celrep.2013.07.025

Cite This Page:

UT Southwestern Medical Center. "Researchers identify switch that controls growth of most aggressive brain tumor cells." ScienceDaily. ScienceDaily, 20 September 2013. <www.sciencedaily.com/releases/2013/09/130920143722.htm>.
UT Southwestern Medical Center. (2013, September 20). Researchers identify switch that controls growth of most aggressive brain tumor cells. ScienceDaily. Retrieved September 2, 2015 from www.sciencedaily.com/releases/2013/09/130920143722.htm
UT Southwestern Medical Center. "Researchers identify switch that controls growth of most aggressive brain tumor cells." ScienceDaily. www.sciencedaily.com/releases/2013/09/130920143722.htm (accessed September 2, 2015).

Share This Page: