Featured Research

from universities, journals, and other organizations

Rare mutations increase risk of late-onset Alzheimer's disease

Date:
September 24, 2013
Source:
Massachusetts General Hospital
Summary:
Researchers have identified and validated two rare gene mutations that appear to cause the common form of Alzheimer's disease (AD) that strikes after the age of 60. The two mutations occur in a gene called ADAM10, which now becomes the second pathologically-confirmed gene for late-onset AD and the fifth AD gene overall.

Massachusetts General Hospital (MGH) researchers have identified and validated two rare gene mutations that appear to cause the common form of Alzheimer's disease (AD) that strikes after the age of 60. The two mutations occur in a gene called ADAM10 -- coding for an enzyme involved in processing the amyloid precursor protein -- which now becomes the second pathologically-confirmed gene for late-onset AD and the fifth AD gene overall.

In their report, which will appear in the October 16 issue of Neuron and has been released online, the investigators from the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND) describe how the two mutations in ADAM10 increase generation and accumulation of the toxic amyloid beta (A-beta) protein in the brains of a mouse model of AD. The mutations also reduce generation of new neural cells in hippocampus, a part of the brain essential to learning and memory.

"This is the first report to document, in animal models, new pathogenic gene mutations for AD since the reports of the original four genes in the 1990s," says Rudolph Tanzi, PhD, director of the Genetics and Aging Research Unit at MGH-MIND and senior author of the Neuron paper. "What we found regarding the many effects of these two rare mutations in ADAM10 strongly suggests that diminished activity of this enzyme can cause AD, and these findings support ADAM10 as a promising therapeutic target for both treatment and prevention."

The process leading to the generation of A-beta -- which accumulates in characteristic plaques in the brains of AD patients -- begins when the amyloid precursor protein (APP) is cut into smaller proteins by enzymes called secretases. A-beta results if APP is first cut into two segments by an enzyme called beta-secretase, and one of those segments is further cut by a gamma-secretase enzyme to release the toxic A-beta fragment. However, processing of APP by an alpha-secretase enzyme -- one of which is ADAM10 -- cuts right through the A-beta region in APP. So instead of generating the toxic A-beta fragment, cleavage with alpha-secretase produces a protein fragment that has been reported to protect and stimulate the generation of neurons in brain.

An earlier study by Tanzi's team reported finding that either of two mutations in ADAM10 increased the risk of AD in seven families with the late-onset form of the disease. Since ADAM10 was already known to be important to alpha-secretase processing of APP, along with having a role in early brain development, the researchers set out to investigate how the observed mutations might lead to the pattern of neurodegeneration characteristic of AD.

Experiments using several strains of transgenic mice -- including lines that express both one of the ADAM10 mutations and an APP mutation that leads to AD-like pathology -- revealed the following:

  • AD-associated mutations in ADAM10 reduced the release from neurons in the animals' brains of the beneficial protein produced by alpha-secretase processing of APP,
  • Reduced ADAM10 activity caused by the mutations increased the generation of A-beta and its accumulation in plaques, along with producing other AD-associated neurodegenerative signs,
  • Reduced ADAM10 activity also impaired the generation of new neurons in the hippocampus, one of the areas of the brain most vulnerable to neurodegeneration in AD,
  • The AD-associated mutations produce these effects by impairing the correct folding of ADAM10 and interfering with its normal functions.

Jaehong Suh, PhD, of the MGH-MIND Genetics and Aging Research Unit, lead author of the Neuron article, says, "Our current study shows that reducing ADAM10 activity by these AD-associated mutations delivers a 'one-two punch' to the brain -- one, decreasing neuroprotective alpha-secretase cleavage products and two, increasing neurotoxic A-beta protein accumulation. Thus, we believe that increasing ADAM10 activity might help to alleviate both genetic and environmental AD risk factors that increase the toxic beta-secretase processing of APP. We're planning to develop optimal ways to increase ADAM10 activity in brain and to further investigate the molecular structure and regulatory mechanism of the ADAM10 enzyme." Suh is an instructor in Neurology, and Tanzi is the Joseph P. and Rose F. Kennedy Professor of Neurology at Harvard Medical School.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jaehong Suh, SeHoon Choi, DonnaM. Romano, MoiraA. Gannon, AndreaN. Lesinski, DooYeon Kim, RudolphE. Tanzi. ADAM10 Missense Mutations Potentiate β-Amyloid Accumulation by Impairing Prodomain Chaperone Function. Neuron, 2013; DOI: 10.1016/j.neuron.2013.08.035

Cite This Page:

Massachusetts General Hospital. "Rare mutations increase risk of late-onset Alzheimer's disease." ScienceDaily. ScienceDaily, 24 September 2013. <www.sciencedaily.com/releases/2013/09/130924113454.htm>.
Massachusetts General Hospital. (2013, September 24). Rare mutations increase risk of late-onset Alzheimer's disease. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2013/09/130924113454.htm
Massachusetts General Hospital. "Rare mutations increase risk of late-onset Alzheimer's disease." ScienceDaily. www.sciencedaily.com/releases/2013/09/130924113454.htm (accessed August 21, 2014).

Share This




More Mind & Brain News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins