Featured Research

from universities, journals, and other organizations

Superfast switching of quantum light sources

Date:
September 27, 2013
Source:
University of Twente
Summary:
Usually, an elementary light source – such as an excited atom or molecule – emits light of a particular color at an unpredictable instance in time. Recently, however, scientists have shown that a light source can be coaxed to emit light at a desired moment in time, within an ultrashort burst. The superfast switching of a light source has applications in fast stroboscopes without laser speckle, in the precise control of quantum systems and for ultrasecure communication using quantum cryptography.

Cartoon of the superfast emission of a light source. The light source is embedded in an optical resonator where it spontaneously emits a photon. During the emission of the photon the favored color of the resonator is quickly switched – symbolized by a hammer to match the color of the light source. During this short interval the light source is triggered to emit an ultrashort burst of photons within a desired moment in time.
Credit: Image courtesy of University of Twente

Usually, an elementary light source -- such as an excited atom or molecule -- emits light of a particular color at an unpredictable instance in time. Recently, however, scientists from the MESA+ Institute for Nanotechnology of the UT, FOM and the Institute for Nanoscience and Cryogenics (CEA/INAC) in France have shown that a light source can be coaxed to emit light at a desired moment in time, within an ultrashort burst. The superfast switching of a light source has applications in fast stroboscopes without laser speckle, in the precise control of quantum systems and for ultrasecure communication using quantum cryptography.

Related Articles


The theoretical results were published in Optics Express.

Spontaneous emission of light from excited sources, such as atoms, molecules or quantum dots, is a fundamental process with many applications in modern technology, such as LEDs and lasers. As the term 'spontaneous emission' indicates, the emission is random in nature and it is therefore impossible to predict the exact emission time of a photon. However, for several applications it is desirable to receive single photons exactly when they are needed with as little uncertainty as possible. This property is crucial for ultra-secure communication using quantum cryptography and in quantum computers. Therefore, the important goal is to fabricate a quantum light source such that it emits a single photon exactly at a desired moment in time.

Switching light emission

The average emission time of quantum light sources can be reduced by locating them in various nanostructures, like optical resonators or waveguides. But the distribution of emission times is always exponential in time in a usual stationary environment. In addition, the smallest uncertainty in the emission time is limited by both the maximum intensity in the resonator and the variations in the preparation time of the emitter. The Dutch-French team proposes to overcome these limitations by quickly switching the resonator length, in which the light source is located. The time duration of the switch should be much shorter than the average emission time. The result is that the favored color of the resonator only matches the emission color of the light source within a short time interval. Only within this short time frame are the photons emitted by the light source into the resonator.

Ultrafast light source

The researchers propose to use quantum dot light sources, which can easily be integrated in semiconductor optical resonators with lengths on the order of microns. The switching of the resonator will be achieved by shining an ultrashort laser pulse at the micropillar resonator during the emission time of the quantum dots. This quickly changes the refractive in the resonator and thereby the effective resonator length. The switching time can be directly controlled by the arrival time of the short laser pulse and by the lifetime of the excited electrons. These controlled light switches have great prospects for creating incoherent ultrafast light sources for fast stroboscopes without laser speckle, in quantum cryptography, in quantum information and for studying ultrafast cavity Quantum electrodynamics.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Journal Reference:

  1. Henri Thyrrestrup, Alex Hartsuiker, Jean-Michel Gιrard, Willem L. Vos. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. Optics Express, 2013; 21 (20): 23130 DOI: 10.1364/OE.21.023130

Cite This Page:

University of Twente. "Superfast switching of quantum light sources." ScienceDaily. ScienceDaily, 27 September 2013. <www.sciencedaily.com/releases/2013/09/130927092348.htm>.
University of Twente. (2013, September 27). Superfast switching of quantum light sources. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/09/130927092348.htm
University of Twente. "Superfast switching of quantum light sources." ScienceDaily. www.sciencedaily.com/releases/2013/09/130927092348.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) — US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins