Featured Research

from universities, journals, and other organizations

New details about brain anatomy, language in young children

Date:
October 8, 2013
Source:
Brown University
Summary:
Researchers have uncovered new details about how brain anatomy influences language development in young kids. Using advanced MRI, they find that different parts of the brain appear to be important for language development at different ages. Surprisingly, anatomy did not predict language very well between the ages of 2 and 4, when language ability increases quickly. That underscores the importance of environment during this critical period.

Researchers Sean Deoni, left, and Jonathan O’Muircheartaigh studied brain scans and tested language skills of 108 children aged 1 to 6 years. Develoment of language skills, it turns out, may be heavily influenced by the child’s environment.
Credit: Mike Cohea/Brown University

Researchers from Brown University and King's College London have gained surprising new insights into how brain anatomy influences language acquisition in young children.

Their study, published in the Journal of Neuroscience, found that the explosion of language acquisition that typically occurs in children between 2 and 4 years old is not reflected in substantial changes in brain asymmetry. Structures that support language ability tend to be localized on the left side of the brain. For that reason, the researchers expected to see more myelin -- the fatty material that insulates nerve fibers and helps electrical signals zip around the brain -- developing on the left side in children entering the critical period of language acquisition. But that is not what the research showed.

"What we actually saw was that the asymmetry of myelin was there right from the beginning, even in the youngest children in the study, around the age of 1," said the study's lead author, Jonathan O'Muircheartaigh, the Sir Henry Wellcome Postdoctoral Fellow at King's College London. "Rather than increasing, those asymmetries remained pretty constant over time."

That finding, the researchers say, underscores the importance of environment during this critical period for language.

O'Muircheartaigh is currently working in Brown University's Advanced Baby Imaging Lab. The lab uses a specialized MRI technique to look at the formation of myelin in babies and toddlers. Babies are born with little myelin, but its growth accelerates rapidly in the first few years of life.

The researchers imaged the brains of 108 children between ages 1 and 6, looking for myelin growth in and around areas of the brain known to support language.

While asymmetry in myelin remained constant over time, the relationship between specific asymmetries and language ability did change, the study found. To investigate that relationship, the researchers compared the brain scans to a battery of language tests given to each child in the study. The comparison showed that asymmetries in different parts of the brain appear to predict language ability at different ages.

"Regions of the brain that weren't important to successful language in toddlers became more important in older children, about the time they start school," O'Muircheartaigh said. "As language becomes more complex and children become more proficient, it seems as if they use different regions of the brain to support it."

Interestingly, the association between asymmetry and language was generally weakest during the critical language period.

"We found that between the ages of 2 and 4, myelin asymmetry doesn't predict language very well," O'Muircheartaigh said. "So if it's not a child's brain anatomy predicting their language skills, it suggests their environment might be more influential."

The researchers hope this study will provide a helpful baseline for future research aimed at pinpointing brain structures that might predict developmental disorders.

"Disorders like autism, dyslexia, and ADHD all have specific deficits in language ability," O'Muircheartaigh said. "Before we do studies looking at abnormalities we need to know how typical children develop. That's what this study is about."

"This work is important, as it is the first to investigate the relationship between brain structure and language across early childhood and demonstrate how this relationship changes with age," said Sean Deoni, assistant professor of engineering, who oversees the Advanced Baby Imaging Lab. "The study highlights the advantage of collaborative work, combining expertise in pediatric imaging at Brown and neuropsychology from the King's College London Institute of Psychiatry, making this work possible."


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. O'Muircheartaigh, D. C. Dean, H. Dirks, N. Waskiewicz, K. Lehman, B. A. Jerskey, S. C. L. Deoni. Interactions between White Matter Asymmetry and Language during Neurodevelopment. Journal of Neuroscience, 2013; 33 (41): 16170 DOI: 10.1523/JNEUROSCI.1463-13.2013

Cite This Page:

Brown University. "New details about brain anatomy, language in young children." ScienceDaily. ScienceDaily, 8 October 2013. <www.sciencedaily.com/releases/2013/10/131008182351.htm>.
Brown University. (2013, October 8). New details about brain anatomy, language in young children. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/10/131008182351.htm
Brown University. "New details about brain anatomy, language in young children." ScienceDaily. www.sciencedaily.com/releases/2013/10/131008182351.htm (accessed October 21, 2014).

Share This



More Mind & Brain News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Movies Might Desensitize Violence For Parents, Not Just Kids

Movies Might Desensitize Violence For Parents, Not Just Kids

Newsy (Oct. 20, 2014) A study suggests that parents become desensitized to violent movies as well as children, which leads them to allow their kids to view violent films. Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins