Science News
from research organizations

Sinking teeth into the evolutionary origin of our skeleton

Date:
October 16, 2013
Source:
University of Bristol
Summary:
Did our skeletons evolve for protection or for violence? The earliest vestiges of our skeleton are encountered in 500-million-year-old fossil fishes, some of which were armor-plated filter feeders, while others were naked predators with a face full of gruesome, vicious teeth.
Share:
       
FULL STORY

A comparison between the growth of the ‘teeth’ of the paraconodont Furnishina (left) and the euconodont Proconodontus (right). They have been subdivided into a number of discrete growth stages, revealing a common mode of growth between these groups. Euconodonts evolved from paraconodonts through the origin of an enamel-like crown (red, transparent).
Credit: DJE Murdock

For decades, it was thought that our skeleton and all its characteristic bony tissues originated in the predators, known as 'conodonts'. However new research, led by the University of Bristol and published today in Nature, shows that they were evolutionary copy-cats who evolved tooth-like structures and tissues independently of other vertebrates. The origin of our skeleton is to be found in the armour of our mud-slurping ancestors who evolved bony armour to protect themselves from such predators.

Palaeontologists from Bristol, Peking University and the US Geological Survey collaborated with physicists from Switzerland to study the tooth-like skeleton of conodonts using high energy X-rays at the Swiss Light Source at the Paul Scherrer Institut in Switzerland. They showed that the tooth-like structures found in the mouths of conodonts evolved within their own evolutionary lineage, rather than in an ancestor shared with other vertebrates.

Lead author, Duncan Murdock of the University of Bristol said: "We were able to visualise every tissue, cell and growth line within the bony teeth, allowing us to study their development. We compared the tooth-like skeleton of conodonts to that of their 'paraconodont' ancestors and to teeth in living vertebrates, demonstrating that the tooth-like structure of conodonts was assembled through evolutionary time independently of other vertebrates."

Co-author, Professor Philip Donoghue of the University of Bristol's School of Earth Sciences said: "This removes a key piece of evidence from the hypothesis that teeth evolved before the skeletal armour, and suggests that the common ancestors of conodonts and other vertebrates likely lacked a mineralized skeleton. Rather, it seems that teeth evolved from the armour of our meek filter-feeding ancestors."


Story Source:

The above post is reprinted from materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Duncan J. E. Murdock, Xi-Ping Dong, John E. Repetski, Federica Marone, Marco Stampanoni, Philip C. J. Donoghue. The origin of conodonts and of vertebrate mineralized skeletons. Nature, 2013; DOI: 10.1038/nature12645

Cite This Page:

University of Bristol. "Sinking teeth into the evolutionary origin of our skeleton." ScienceDaily. ScienceDaily, 16 October 2013. <www.sciencedaily.com/releases/2013/10/131016132244.htm>.
University of Bristol. (2013, October 16). Sinking teeth into the evolutionary origin of our skeleton. ScienceDaily. Retrieved August 31, 2015 from www.sciencedaily.com/releases/2013/10/131016132244.htm
University of Bristol. "Sinking teeth into the evolutionary origin of our skeleton." ScienceDaily. www.sciencedaily.com/releases/2013/10/131016132244.htm (accessed August 31, 2015).

Share This Page: