Featured Research

from universities, journals, and other organizations

The brain's neural thermostat

Date:
October 16, 2013
Source:
Brandeis University
Summary:
Scientists observed in vivo that neocortical neurons, cells that control higher functions such as sight, language and spatial reasoning, have a set average firing rate and return to this set point even during prolonged periods of sensory deprivation. Furthermore, the average firing rate is so well regulated by this neural thermostat that the rates do not change between periods of sleep and wakefulness.

As we learn and develop, our neurons change. They make new pathways and connections as our brain processes new information. In order to do this, individual neurons use an internal gauge to maintain a delicate balance that keeps our brains from becoming too excitable.

Scientists have long theorized a larger internal system monitors these individual gauges, like a neural thermostat, regulating average firing rates across the whole brain. Without this thermostat, they reasoned, our flexible neurons would fire out of control, making bad connections or none at all. The result of a faulty neural thermostat could be an epileptic seizure, catatonia or autism.

This thermostat-like control of neuron firing has never been observed in a live, complex animal -- until now.

Brandeis University scientists observed in vivo that neocortical neurons, cells that control higher functions such as sight, language and spatial reasoning, have a set average firing rate and return to this set point even during prolonged periods of sensory deprivation. Furthermore, the average firing rate is so well regulated by this neural thermostat that the rates do not change between periods of sleep and wakefulness.

The study, led by professor Gina Turrigiano in collaboration with the labs of Don Katz and Stephen Van Hooser, was the cover story in the Oct. 16 issue of the journal Neuron.

There is a time in early development across mammalian species when the brain does most of its wiring, affected largely by the environment in which the animal is being raised. This study demonstrated that during this period, neurons are constantly "self-tuning" to adjust for changes in environmental inputs, says postdoctoral fellow Keith Hengen, the paper's first author.

"If something is disturbed during that critical period of early childhood development, functioning neurons can self-adjust and return to their set-point average firing rate," Hengen says.

In this study, Turrigiano's team studied young rats that temporarily lost vision in one eye. In the first 48 hours, the neuronal firing rates dropped significantly from lack of external stimuli. But within the next 48 hours, those neurons rebounded back to their set-point rate -- like a cold house heating up.

Soon, the neocortical neural firing rates were the same in both hemispheres, one with visual data and one without. Turrigiano's team studied the animals awake and asleep -- and found that although the pattern of neural firing changed, the rate of firing stayed exactly the same.

This homeostatic mechanism keeps neurons on an even keel even as they change in response to learning, development and environmental factors.

"The homeostatic rule can control average activity across periods of sleep and wakefulness," Hengen said. "The other rules in the brain have to play out in the context of this tightly regulated system of locked-in average firing rates."

A demonstrated neural firing-rate set point opens up a whole new approach to thinking about neurological disorders such as epilepsy, in which the brain is too excited, and autism, in which the brain is not excited enough.

"If we can figure out how these set points are built, we may be able to adjust them and bring the brains of people suffering from such disorders back into balance," Turrigiano says.


Story Source:

The above story is based on materials provided by Brandeis University. The original article was written by Leah Burrows. Note: Materials may be edited for content and length.


Journal Reference:

  1. KeithB. Hengen, MaryE. Lambo, StephenD. VanHooser, DonaldB. Katz, GinaG. Turrigiano. Firing Rate Homeostasis in Visual Cortex of Freely Behaving Rodents. Neuron, 2013; 80 (2): 335 DOI: 10.1016/j.neuron.2013.08.038

Cite This Page:

Brandeis University. "The brain's neural thermostat." ScienceDaily. ScienceDaily, 16 October 2013. <www.sciencedaily.com/releases/2013/10/131016152843.htm>.
Brandeis University. (2013, October 16). The brain's neural thermostat. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/10/131016152843.htm
Brandeis University. "The brain's neural thermostat." ScienceDaily. www.sciencedaily.com/releases/2013/10/131016152843.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins