Featured Research

from universities, journals, and other organizations

Learning dialects shapes brain areas that process spoken language

Date:
October 18, 2013
Source:
RIKEN
Summary:
Using advanced imaging to visualize brain areas used for understanding language in native Japanese speakers, a new study finds that the pitch-accent in words pronounced in standard Japanese activates different brain hemispheres depending on whether the listener speaks standard Japanese or one of the regional dialects.

This is a graph showing brain activity in the right and left hemispheres measured as changes in blood oxygen concentration using Near Infrared Spectroscopy. Middle panels a show brain responses to words that differ in pitch-accent "ame" (candy in low-high pitch) vs. "a'me"(rain, in high-low pitch) Standard Japanese speakers showed higher activation in the left hemisphere (blue line) whereas the difference in accent-less Japanese speakers did not show a statistically significant left-dominant activation.
Credit: RIKEN

Using advanced imaging to visualize brain areas used for understanding language in native Japanese speakers, a new study from the RIKEN Brain Science Institute finds that the pitch-accent in words pronounced in standard Japanese activates different brain hemispheres depending on whether the listener speaks standard Japanese or one of the regional dialects.

Related Articles


In the study published in the Journal Brain and Language, Drs. Yutaka Sato, Reiko Mazuka and their colleagues examined if speakers of a non-standard dialect used the same brain areas while listening to spoken words as native speakers of the standard dialect or as someone who acquired a second language later in life.

When we hear language our brain dissects the sounds to extract meaning. However, two people who speak the same language may have trouble understanding each other due to regional accents, such as Australian and American English. In some languages, such as Japanese, these regional differences are more pronounced than an accent and are called dialects.

Unlike different languages that may have major differences in grammar and vocabulary, the dialects of a language usually differ at the level of sounds and pronunciation. In Japan, in addition to the standard Japanese dialect, which uses a pitch-accent to distinguish identical words with different meanings, there are other regional dialects that do not.

Similar to the way that a stress in an English word can change its meaning, such as "pro'duce" and "produ'ce," identical words in the standard Japanese language have different meanings depending on the pitch-accent. The syllables of a word can have either a high or a low pitch and the combination of pitch-accents for a particular word imparts it with different meanings.

The experimental task was designed to test the participants' responses when they distinguish three types of word pairs: (1) words such as /ame'/ (candy) versus /kame/ (jar) that differ in one sound, (2) words such as /ame'/ (candy) versus /a'me/ (rain) that differ in their pitch accent, and (3) words such as 'ame' (candy in declarative intonation) and /ame?/ (candy in a question intonation).

RIKEN neuroscientists used Near Infrared Spectroscopy (NIRS) to examine whether the two brain hemispheres are activated differently in response to pitch changes embedded in a pair of words in standard and accent-less dialect speakers. This non-invasive way to visualize brain activity is based on the fact that when a brain area is active, blood supply increases locally in that area and this increase can be detected with an infrared laser.

It is known that pitch changes activate both hemispheres, whereas word meaning is preferentially associated with the left-hemisphere. When the participants heard the word pair that differed in pitch-accent, /ame'/ (candy) vs /a'me/ (rain), the left hemisphere was predominantly activated in standard dialect speakers, whereas in accent-less dialect speakers did not show the left-dominant activation. Thus, standard Japanese speakers use the pitch-accent to understand the word meaning. However, accent-less dialect speakers process pitch changes similar to individuals who learn a second language later in life.

The results are surprising because both groups are native Japanese speakers who are familiar with the standard dialect. "Our study reveals that an individual's language experience at a young age can shape the way languages are processed in the brain," comments Dr. Sato. "Sufficient exposure to a language at a young age may change the processing of a second language so that it is the same as that of the native language."


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yutaka Sato, Akira Utsugi, Naoto Yamane, Masatoshi Koizumi, Reiko Mazuka. Dialectal differences in hemispheric specialization for Japanese lexical pitch accent. Brain and Language, 2013; DOI: 10.1016/j.bandl.2013.09.008

Cite This Page:

RIKEN. "Learning dialects shapes brain areas that process spoken language." ScienceDaily. ScienceDaily, 18 October 2013. <www.sciencedaily.com/releases/2013/10/131018132054.htm>.
RIKEN. (2013, October 18). Learning dialects shapes brain areas that process spoken language. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2013/10/131018132054.htm
RIKEN. "Learning dialects shapes brain areas that process spoken language." ScienceDaily. www.sciencedaily.com/releases/2013/10/131018132054.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins