Featured Research

from universities, journals, and other organizations

Important mechanism behind nanoparticle reactivity discovered

Date:
November 3, 2013
Source:
University of York
Summary:
An international team of researchers has used pioneering electron microscopy techniques to discover an important mechanism behind the reaction of metallic nanoparticles with the environment.

An international team of researchers has used pioneering electron microscopy techniques to discover an important mechanism behind the reaction of metallic nanoparticles with the environment.

Crucially, the research led by the University of York and reported in Nature Materials, shows that oxidation of metals -- the process that describes, for example, how iron reacts with oxygen, in the presence of water, to form rust -- proceeds much more rapidly in nanoparticles than at the macroscopic scale. This is due to the large amount of strain introduced in the nanoparticles due to their size which is over a thousand times smaller than the width of a human hair.

Improving the understanding of metallic nanoparticles -- particularly those of iron and silver -- is of key importance to scientists because of their many potential applications. For example, iron and iron oxide nanoparticles are considered important in fields ranging from clean fuel technologies, high density data storage and catalysis, to water treatment, soil remediation, targeted drug delivery and cancer therapy.

The research team, which also included scientists from the University of Leicester, the National Institute for Materials Science, Japan and the University of Illinois at Urbana-Champaign, USA, used the unprecedented resolution attainable with aberration-corrected scanning transmission electron microscopy to study the oxidisation of cuboid iron nanoparticles and performed strain analysis at the atomic level.

Lead investigator Dr Roland Krφger, from the University of York's Department of Physics, said: "Using an approach developed at York and Leicester for producing and analysing very well-defined nanoparticles, we were able to study the reaction of metallic nanoparticles with the environment at the atomic level and to obtain information on strain associated with the oxide shell on an iron core.

"We found that the oxide film grows much faster on a nanoparticle than on a bulk single crystal of iron -- in fact many orders of magnitude quicker. Analysis showed there was an astonishing amount of strain and bending in nanoparticles which would lead to defects in bulk material."

The scientists used a method known as Z-contrast imaging to examine the oxide layer that forms around a nanoparticle after exposure to the atmosphere, and found that within two years the particles were completely oxidised.

Corresponding author Dr Andrew Pratt, from York's Department of Physics and Japan's National Institute for Materials Science, said: "Oxidation can drastically alter a nanomaterial's properties -- for better or worse -- and so understanding this process at the nanoscale is of critical importance. This work will therefore help those seeking to use metallic nanoparticles in environmental and technological applications as it provides a deeper insight into the changes that may occur over their desired functional lifetime."

The experimental work was carried out at the York JEOL Nanocentre and the Department of Physics at the University of York, the Department of Physics and Astronomy at the University of Leicester and the Frederick-Seitz Institute for Materials Research at the University of Illinois at Urbana-Champaign.

The scientists obtained images over a period of two years. After this time, the iron nanoparticles, which were originally cube-shaped, had become almost spherical and were completely oxidised.

Professor Chris Binns, from the University of Leicester, said: "For many years at Leicester we have been developing synthesis techniques to produce very well-defined nanoparticles and it is great to combine this technology with the excellent facilities and expertise at York to do such penetrating science. This work is just the beginning and we intend to capitalise on our complementary abilities to initiate a wider collaborative programme."

The research was supported by a Max-Kade Foundation Visiting Professorship stipend to Dr Krφger and financial support from the World Universities Network (WUN). The Engineering and Physical Sciences Research Council (EPSRC) funded the initial stages of the project (EP/D034604/1).


Story Source:

The above story is based on materials provided by University of York. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrew Pratt, Leonardo Lari, Ondrej Hovorka, Amish Shah, Charles Woffinden, Steve P Tear, Chris Binns and Roland Krφger. Enhanced Oxidation of Nanoparticles through Strain-Mediated Ionic Transport. Nature Materials, 2013

Cite This Page:

University of York. "Important mechanism behind nanoparticle reactivity discovered." ScienceDaily. ScienceDaily, 3 November 2013. <www.sciencedaily.com/releases/2013/11/131103140257.htm>.
University of York. (2013, November 3). Important mechanism behind nanoparticle reactivity discovered. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2013/11/131103140257.htm
University of York. "Important mechanism behind nanoparticle reactivity discovered." ScienceDaily. www.sciencedaily.com/releases/2013/11/131103140257.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) — Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) — Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins