Featured Research

from universities, journals, and other organizations

Antidepressant drug induces a juvenile-like state in neurons of the prefrontal cortex

Date:
November 4, 2013
Source:
Fujita Health University, ICMS
Summary:
Fluoxetine, a commonly prescribed anti-depressive drug, induces a juvenile-like state in the mouse prefrontal cortex. Brain development and maturation has been thought to be a one-way process until now, in which plasticity diminishes with age. The possibility that the adult brain can revert to a younger state and regain plasticity has not generally been considered until now.

For long, brain development and maturation has been thought to be a one-way process, in which plasticity diminishes with age. The possibility that the adult brain can revert to a younger state and regain plasticity has not been considered often.

In a paper appearing on November 4 in the online open-access journal Molecular Brain, Dr. Tsuyoshi Miyakawa and his colleagues from Fujita Health University show that chronic administration of one of the most widely used antidepressants fluoxetine (FLX, which is also known by trade names like Prozac, Sarafem, and Fontex and is a selective serotonin reuptake inhibitor) can induce a juvenile-like state in specific types of neurons in the prefrontal cortex of adult mice.

In their study, FLX-treated adult mice showed reduced expression of parvalbumin and perineuronal nets, which are molecular markers for maturation and are expressed in a certain group of mature neurons in adults, and increased expression of an immature marker, which typically appears in developing juvenile brains, in the prefrontal cortex. These findings suggest the possibility that certain types of adult neurons in the prefrontal cortex can partially regain a youth-like state; the authors termed this as induced-youth or iYouth. These researchers as well as other groups had previously reported similar effects of FLX in the hippocampal dentate gyrus, basolateral amygdala, and visual cortex, which were associated with increased neural plasticity in certain types of neurons. This study is the first to report on "iYouth" in the prefrontal cortex, which is the brain region critically involved in functions such as working memory, decision-making, personality expression, and social behavior, as well as in psychiatric disorders related to deficits in these functions.

Network dysfunction in the prefrontal cortex and limbic system, including the hippocampus and amygdala, is known to be involved in the pathophysiology of depressive disorders. Reversion to a youth-like state may mediate some of the therapeutic effects of FLX by restoring neural plasticity in these regions. On the other hand, some non-preferable aspects of FLX-induced pseudo-youth may play a role in certain behavioral effects associated with FLX treatment, such as aggression, violence, and psychosis, which have recently received attention as adverse effects of FLX.

Interestingly, expression of the same molecular markers of maturation, as discussed in this study, has been reported to be decreased in the prefrontal cortex of postmortem brains of patients with schizophrenia. This raises the possibility that some of FLX's adverse effects may be attributable to iYouth in the same type of neurons in this region.

Currently, basic knowledge on this is lacking, and there are several unanswered questions like: What are the molecular and cellular mechanisms underlying iYouth? What are the differences between actual youth and iYouth? Is iYouth good or bad? Future studies to answer these questions could potentially revolutionize the prevention and/or treatment of various neuropsychiatric disorders and aid in improving the quality of life for an aging population.


Story Source:

The above story is based on materials provided by Fujita Health University, ICMS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Koji Ohira, Rika Takeuchi, Tsuyoshi Iwanaga, Tsuyoshi Miyakawa. Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice. Molecular Brain, 2013; 6 (1): 43 DOI: 10.1186/1756-6606-6-43

Cite This Page:

Fujita Health University, ICMS. "Antidepressant drug induces a juvenile-like state in neurons of the prefrontal cortex." ScienceDaily. ScienceDaily, 4 November 2013. <www.sciencedaily.com/releases/2013/11/131104112633.htm>.
Fujita Health University, ICMS. (2013, November 4). Antidepressant drug induces a juvenile-like state in neurons of the prefrontal cortex. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/11/131104112633.htm
Fujita Health University, ICMS. "Antidepressant drug induces a juvenile-like state in neurons of the prefrontal cortex." ScienceDaily. www.sciencedaily.com/releases/2013/11/131104112633.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins