Featured Research

from universities, journals, and other organizations

Snap to attention: Polymers that react and move to light

Date:
November 9, 2013
Source:
University of Pittsburgh
Summary:
Researchers are investigating polymers that "snap" when triggered by light, converting light energy into mechanical work.

Microvehicles and other devices that can change shape or move with no power source other than a beam of light may be possible through research led by the University of Pittsburgh. The researchers are investigating polymers that "snap" when triggered by light, thereby converting light energy into mechanical work and potentially eliminating the need for traditional machine components such as switches and power sources.

"I like to compare this action to that of a Venus flytrap," says M. Ravi Shankar, lead author of the study and associate professor of industrial engineering in the University's Swanson School of Engineering. "The underlying mechanism that allows the Venus flytrap to capture prey is slow. But because its internal structure is coupled to use elastic instability, a snapping action occurs, and this delivers the power to shut the trap quickly. A similar mechanism acts in the beak of the Hummingbird to help snap-up insects"

The research was performed by Shankar in collaboration with Timothy J. White of the Air Force Research Laboratory at Wright-Patterson Air Force Base and Matthew Smith, assistant professor of engineering at Hope College in Holland, Mich.

Focusing on this elastic instability, Shankar examined polymeric materials, prepared by researchers at the Air Force Research Laboratory, which demonstrated unprecedented actuation rates and output powers. With light from a hand-held laser pointer, the polymers generate high amounts of power to convert the light into mechanical work without any onboard power source or wiring. Specific functions would be pre-programmed into the material so that the device would function once exposed to a light source and controlled by changing the character of the light.

"As we look to real-world applications, you could activate a switch simply by shining light on it," Shankar says. "For example, you could develop soft machines such as stents or other biomedical devices that can be more adaptive and easily controlled. In a more complex mechanism, we could imagine a light-driven robotic or morphing structure, or microvehicles that would be more compact because you eliminate the need for an on-board power system. The work potential is built into the polymer itself and is triggered with light."


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. R. Shankar, M. L. Smith, V. P. Tondiglia, K. M. Lee, M. E. McConney, D. H. Wang, L.-S. Tan, T. J. White. Contactless, photoinitiated snap-through in azobenzene-functionalized polymers. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1313195110

Cite This Page:

University of Pittsburgh. "Snap to attention: Polymers that react and move to light." ScienceDaily. ScienceDaily, 9 November 2013. <www.sciencedaily.com/releases/2013/11/131109153933.htm>.
University of Pittsburgh. (2013, November 9). Snap to attention: Polymers that react and move to light. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/11/131109153933.htm
University of Pittsburgh. "Snap to attention: Polymers that react and move to light." ScienceDaily. www.sciencedaily.com/releases/2013/11/131109153933.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins