Featured Research

from universities, journals, and other organizations

Snap to attention: Polymers that react and move to light

Date:
November 9, 2013
Source:
University of Pittsburgh
Summary:
Researchers are investigating polymers that "snap" when triggered by light, converting light energy into mechanical work.

Microvehicles and other devices that can change shape or move with no power source other than a beam of light may be possible through research led by the University of Pittsburgh. The researchers are investigating polymers that "snap" when triggered by light, thereby converting light energy into mechanical work and potentially eliminating the need for traditional machine components such as switches and power sources.

"I like to compare this action to that of a Venus flytrap," says M. Ravi Shankar, lead author of the study and associate professor of industrial engineering in the University's Swanson School of Engineering. "The underlying mechanism that allows the Venus flytrap to capture prey is slow. But because its internal structure is coupled to use elastic instability, a snapping action occurs, and this delivers the power to shut the trap quickly. A similar mechanism acts in the beak of the Hummingbird to help snap-up insects"

The research was performed by Shankar in collaboration with Timothy J. White of the Air Force Research Laboratory at Wright-Patterson Air Force Base and Matthew Smith, assistant professor of engineering at Hope College in Holland, Mich.

Focusing on this elastic instability, Shankar examined polymeric materials, prepared by researchers at the Air Force Research Laboratory, which demonstrated unprecedented actuation rates and output powers. With light from a hand-held laser pointer, the polymers generate high amounts of power to convert the light into mechanical work without any onboard power source or wiring. Specific functions would be pre-programmed into the material so that the device would function once exposed to a light source and controlled by changing the character of the light.

"As we look to real-world applications, you could activate a switch simply by shining light on it," Shankar says. "For example, you could develop soft machines such as stents or other biomedical devices that can be more adaptive and easily controlled. In a more complex mechanism, we could imagine a light-driven robotic or morphing structure, or microvehicles that would be more compact because you eliminate the need for an on-board power system. The work potential is built into the polymer itself and is triggered with light."


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. R. Shankar, M. L. Smith, V. P. Tondiglia, K. M. Lee, M. E. McConney, D. H. Wang, L.-S. Tan, T. J. White. Contactless, photoinitiated snap-through in azobenzene-functionalized polymers. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1313195110

Cite This Page:

University of Pittsburgh. "Snap to attention: Polymers that react and move to light." ScienceDaily. ScienceDaily, 9 November 2013. <www.sciencedaily.com/releases/2013/11/131109153933.htm>.
University of Pittsburgh. (2013, November 9). Snap to attention: Polymers that react and move to light. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2013/11/131109153933.htm
University of Pittsburgh. "Snap to attention: Polymers that react and move to light." ScienceDaily. www.sciencedaily.com/releases/2013/11/131109153933.htm (accessed August 28, 2014).

Share This




More Matter & Energy News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins