Featured Research

from universities, journals, and other organizations

Key brain signaling mechanism for rapidly acting antidepressants

Date:
November 19, 2013
Source:
Elsevier
Summary:
Two years ago, mammalian target of rapamycin or mTOR, a signaling protein, was identified as a key mediator of the antidepressant effects of ketamine, the first rapidly acting antidepressant medication to be identified.

Two years ago, mammalian target of rapamycin or mTOR, a signaling protein, was identified as a key mediator of the antidepressant effects of ketamine, the first rapidly acting antidepressant medication to be identified.

Several years later, a group at the National Institutes of Mental Health Intramural Program reported that scopolamine, a muscarinic acetylcholine receptor antagonist, also produced rapidly appearing antidepressant effects, similar to the actions of ketamine.

Together these findings represent one of the most significant advances in the field of depression in recent years.

Now, new results reported in the current issue of Biological Psychiatry by researchers at the Yale University School of Medicine demonstrate that scopolamine causes rapid activation of mTOR signaling and increased number of synaptic connections in the prefrontal cortex.

The prefrontal cortex is an important brain region, involved in executive and cognitive functioning, decision-making, planning, and the expression of personality. It is also implicated in the pathophysiology and treatment of depression.

"These effects are similar to the actions of ketamine, showing that two drugs with completely different receptor blocking profiles have common downstream actions linked to rapid antidepressant responses," said Dr. Ronald Duman, senior author on the project. "Moreover, the increase in synaptic connections reverses the deficit caused by stress and depression and thereby reinstates the normal control of mood and emotion."

"It would be very important to know if all of the new generation of rapidly acting antidepressant medications acted through a final common signaling pathway within neurons. This knowledge might guide insights into why some patients fail to respond to available antidepressants and provide directions for treating depression," said Dr. John Krystal, Editor of Biological Psychiatry.

The authors agree, noting that these findings suggest that different muscarinic acetylcholine receptor antagonist may be even more effective and cause fewer side effects than scopolamine. Further studies of such agents are already underway.


Story Source:

The above story is based on materials provided by Elsevier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bhavya Voleti, Andrea Navarria, Rong-Jian Liu, Mounira Banasr, Nanxin Li, Rose Terwilliger, Gerard Sanacora, Tore Eid, George Aghajanian, Ronald S. Duman. Scopolamine Rapidly Increases Mammalian Target of Rapamycin Complex 1 Signaling, Synaptogenesis, and Antidepressant Behavioral Responses. Biological Psychiatry, 2013; 74 (10): 742 DOI: 10.1016/j.biopsych.2013.04.025

Cite This Page:

Elsevier. "Key brain signaling mechanism for rapidly acting antidepressants." ScienceDaily. ScienceDaily, 19 November 2013. <www.sciencedaily.com/releases/2013/11/131119101046.htm>.
Elsevier. (2013, November 19). Key brain signaling mechanism for rapidly acting antidepressants. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2013/11/131119101046.htm
Elsevier. "Key brain signaling mechanism for rapidly acting antidepressants." ScienceDaily. www.sciencedaily.com/releases/2013/11/131119101046.htm (accessed August 30, 2014).

Share This




More Mind & Brain News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins