Featured Research

from universities, journals, and other organizations

Breakthrough for biofuel production from tiny marine algae

Date:
November 20, 2013
Source:
University of California, San Diego
Summary:
Researchers have developed a method for greatly enhancing biofuel production in tiny marine algae.

A scanning electron microscope image of the diatom Thalassiosira pseudonana.
Credit: Image courtesy of University of California, San Diego

Researchers at Scripps Institution of Oceanography at UC San Diego have developed a method for greatly enhancing biofuel production in tiny marine algae.

Related Articles


As reported in this week's online edition of the Proceedings of the National Academy of Sciences, Scripps graduate student Emily Trentacoste led the development of a method to genetically engineer a key growth component in biofuel production.

In the quest to loosen humanity's dependence on traditional fossil fuel consumption, and with it rising concentrations of carbon dioxide and their damaging impacts on the environment, finding economically viable fuels from biological sources has been elusive.

A significant roadblock in algal biofuel research surrounds the production of lipid oils, the fat molecules that store energy that can be produced for fuel. A catch-22 has stymied economically efficient biofuel production because algae mainly produce the desired lipid oils when they are starved for nutrients. Yet if they are limited in nutrients, they don't grow well. With a robust diet algae grow well, but they produce carbohydrates instead of the desired lipids for fuel.

In a significant leap forward that clears the lipid production hurdle, Trentacoste and her colleagues used a data set of genetic expression (called "transcriptomics" in laboratories) to target a specific enzyme inside a group of microscopic algae known as diatoms (Thalassiosira pseudonana). By metabolically engineering a "knock-down" of fat-reducing enzymes called lipases, the researchers were able to increase lipids without compromising growth. The genetically altered strains they developed, the researchers say, could be produced broadly in other species.

"These results demonstrate that targeted metabolic manipulations can be used to increase accumulation of fuel-relevant molecules.… with no negative effects on growth," said Trentacoste. "We have shown that engineering this pathway is a unique and practical approach for increasing lipid yields."

"Scientifically this is a huge achievement," said Mark Hildebrand, a marine biology professor at Scripps and a coauthor of the study. "Five years ago people said you would never be able to get more lipids without affecting growth negatively. This paper shows that there isn't an intrinsic barrier and gives us hope of more new things that we can try -- it opens the door to a lot more work to be done."

In addition to lowering the cost of biofuel production by increasing lipid content, the new method has led to advances in the speed of algal biofuel crop production due to the efficient screening process used in the new study.

"Maintaining high growth rates and high biomass accumulation is imperative for algal biofuel production on large economic scales," the authors note in the paper.

"It seems especially fitting that Scripps-UC San Diego is displaying so much leadership in the field of sustainable biofuels from algae, for instance with the California Center for Algae Biotechnology starting here, given the history of the institution playing such a pivotal role in climate change research," said paper coauthor William Gerwick, a distinguished professor of oceanography and pharmaceutical sciences at Scripps's Center for Marine Biotechnology and Biomedicine and UC San Diego's Skaggs School of Pharmacy and Pharmaceutical Sciences. "But these advances do not happen in isolation, and the current project is a great illustration of how different labs can collaborate to achieve greater advances than possible singly."

In addition to Trentacoste, Hildebrand, and Gerwick, coauthors include Roshan Shrestha, Sarah Smith, Corine Gle, and Aaron Hartmann. With a graduate student leading the research and two others contributing, the study underscores the value of a Scripps-UC San Diego education and the leadership role of students in cutting edge research.

The National Institutes of Health, California Energy Commission, Air Force Office of Scientific Research, Department of Energy, and National Science Foundation supported the research.


Story Source:

The above story is based on materials provided by University of California, San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. M. Trentacoste, R. P. Shrestha, S. R. Smith, C. Gle, A. C. Hartmann, M. Hildebrand, W. H. Gerwick. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1309299110

Cite This Page:

University of California, San Diego. "Breakthrough for biofuel production from tiny marine algae." ScienceDaily. ScienceDaily, 20 November 2013. <www.sciencedaily.com/releases/2013/11/131120192147.htm>.
University of California, San Diego. (2013, November 20). Breakthrough for biofuel production from tiny marine algae. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/11/131120192147.htm
University of California, San Diego. "Breakthrough for biofuel production from tiny marine algae." ScienceDaily. www.sciencedaily.com/releases/2013/11/131120192147.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava Inches Closer to Highway

Raw: Lava Inches Closer to Highway

AP (Dec. 21, 2014) Officials have opened a new road on Hawaii's Big Island for drivers to take care of their daily needs if encroaching lava from Kilauea Volcano crosses a highway and cuts them off from the rest of the island. (Dec. 20) Video provided by AP
Powered by NewsLook.com
Raw: Scuba Diving Santa Off Florida Keys

Raw: Scuba Diving Santa Off Florida Keys

AP (Dec. 20, 2014) A scuba diving Santa Claus explored the waters of the Florida Keys National Marine Sanctuary. Dive shop owner Spencer Slate makes the dive each year to help raise money for charity. (Dec. 20) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins