Featured Research

from universities, journals, and other organizations

Different cellular mechanisms behind regenerated body parts

Date:
November 21, 2013
Source:
Karolinska Institutet
Summary:
Scientists have discovered that two separate species of salamander differ in the way their muscles grow back in lost body parts. Their findings on the species-specific solutions demonstrate there is more than one mechanism of tissue regeneration.

Scientists at Karolinska Institutet have discovered that two separate species of salamander differ in the way their muscles grow back in lost body parts. Their findings on the species-specific solutions, published in the scientific periodical Cell Stem Cell, demonstrate there is more than one mechanism of tissue regeneration.

To carry out their study, the scientists labelled different cell types in two species of salamander in order to ascertain what kinds of cell give rise to new muscle tissue in salamanders that had lost a front leg. Salamanders are known for their remarkable ability to regenerate not only lost tails and other extremities but also the tissue of internal organs, such as the heart and brain. The traditional view is that the new tissue is formed from a population of stem cells activated when body parts are damaged; what they found, however, was that even though the two species were relatively closely related, this was true only for one.

"We show that in one of the salamander species, muscle tissue is regenerated from specialised muscle cells that dedifferentiate and forget what type of cell they've been," says principal investigator Dr Andrαs Simon at the Department of Cell and Molecular Biology. "This is an interesting cellular mechanism that destabilises cell specialisation and produces new stem cells, as opposed to the other species, in which the new muscles are created from existing stem cells."

In the dedifferentiating species, the capacity to regenerate tissue does not decline with age, which the scientists believe can be linked to their ability to make new stem cells from muscle cells on demand. Human muscle is also regenerative, and damaged fibres are repaired effectively. However, in patients with muscular dystrophy (a group of disorders in which the muscles are gradually broken down), for instance, the body eventually cannot keep up with the loss of muscle tissue. A possible reason for this is that the number of functional muscle stem cells in these patients decreases over time, leaving the population too small to repair the damage. The findings from the salamanders are not yet applicable to humans, but the knowledge gained will one day help scientists understand how damaged or lost tissue is regenerated.

"It's important to study the process by which the salamander's muscle cells forget their cellular identity and how it s modulated," says Dr Simon. "It's also important to examine why their ability to regenerate is independent of age and the number of times the same tissue and body part has been regenerated."


Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tatiana Sandoval-Guzmαn, Heng Wang3, Shahryar Khattak, Maritta Schuez, Kathleen Roensch, Eugeniu Nacu, Akira Tazaki, Alberto Joven, Elly M. Tanaka, Andrαs Simon. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell, November 2013

Cite This Page:

Karolinska Institutet. "Different cellular mechanisms behind regenerated body parts." ScienceDaily. ScienceDaily, 21 November 2013. <www.sciencedaily.com/releases/2013/11/131121125908.htm>.
Karolinska Institutet. (2013, November 21). Different cellular mechanisms behind regenerated body parts. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/11/131121125908.htm
Karolinska Institutet. "Different cellular mechanisms behind regenerated body parts." ScienceDaily. www.sciencedaily.com/releases/2013/11/131121125908.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins