Featured Research

from universities, journals, and other organizations

Key protein responsible for controlling communication between brain cells identified

Date:
November 27, 2013
Source:
University of Bristol
Summary:
Scientists are a step closer to understanding how some of the brain's 100 billion nerve cells co-ordinate their communication.

An image of a hippocampal neuron stained for endogenous RIM1 and SUMO. RIM1 is in red and SUMO in green.
Credit: University of Bristol

Scientists are a step closer to understanding how some of the brain's 100 billion nerve cells co-ordinate their communication. The study is published in the journal Cell Reports.

The University of Bristol research team investigated some of the chemical processes that underpin how brain cells co-ordinate their communication. Defects in this communication are associated with disorders such as epilepsy, autism and schizophrenia, and therefore these findings could lead to the development of novel neurological therapies.

Neurons in the brain communicate with each other using chemicals called neurotransmitters. This release of neurotransmitter from neurons is tightly controlled by many different proteins inside the neuron. These proteins interact with each other to ensure that neurotransmitter is only released when necessary. Although the mechanisms that control this release have been extensively studied, the processes that co-ordinate how and when the component proteins interact is not fully understood.

The School of Biochemistry researchers have now discovered that one of these proteins called 'RIM1α' is modified by a small protein named 'SUMO' which attaches to a specific region in RIM1α. This process acts as a 'molecular switch' which is required for normal neurotransmitter release.

Jeremy Henley, Professor of Molecular Neuroscience in the University's Faculty of Medical and Veterinary Sciences and the study's lead author, said: "These findings are important as they show that SUMO modification plays a vital and previously unsuspected role in normal brain function."

The research builds on the team's earlier work that identified a group of proteins in the brain responsible for protecting nerve cells from damage and could be used in future for therapies for stroke and other brain diseases.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fatima Girach, TimJ. Craig, DanielL. Rocca, JeremyM. Henley. RIM1α SUMOylation Is Required for Fast Synaptic Vesicle Exocytosis. Cell Reports, 2013; DOI: 10.1016/j.celrep.2013.10.039

Cite This Page:

University of Bristol. "Key protein responsible for controlling communication between brain cells identified." ScienceDaily. ScienceDaily, 27 November 2013. <www.sciencedaily.com/releases/2013/11/131127122409.htm>.
University of Bristol. (2013, November 27). Key protein responsible for controlling communication between brain cells identified. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2013/11/131127122409.htm
University of Bristol. "Key protein responsible for controlling communication between brain cells identified." ScienceDaily. www.sciencedaily.com/releases/2013/11/131127122409.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins