Featured Research

from universities, journals, and other organizations

Understanding hearing

Date:
December 2, 2013
Source:
Technische Universitaet Muenchen
Summary:
Children learning to speak depend on functional hearing. So-called cochlear implants allow deaf people to hear again by stimulating the auditory nerve directly. Researchers are working to overcome current limits of the technology. They are investigating the implementation of signals in the auditory nerve and the subsequent neuronal processing in the brain.

Prof. Werner Hemmert, director of the department for Bio-Inspired Information Processing at the TUM.
Credit: Astrid Eckert/TUM

Children learning to speak depend on functional hearing. So-called cochlear implants allow deaf people to hear again by stimulating the auditory nerve directly. Researchers at the Technische Universitaet Muenchen (TUM) are working to overcome current limits of the technology. They are investigating the implementation of signals in the auditory nerve and the subsequent neuronal processing in the brain. Using the computer models developed at the TUM manufacturers of cochlear implants improve their devices.

Intact hearing is a prerequisite for learning to speak. This is why children who are born deaf are fitted with so-called cochlear implants as early as possible. Cochlear implants consist of a speech processor and a transmitter coil worn behind the ear, together with the actual implant, an encapsulated microprocessor placed under the skin to directly stimulate the auditory nerve via an electrode with up to 22 contacts.

Adults who have lost their hearing can also benefit from cochlear implants. The devices have advanced to the most successful neuroprostheses. They allow patients to understand the spoken word quite well again. But the limits of the technology are reached when listening to music, for example, or when many people speak at once. Initial improvements are realized by using cochlear implants in both ears.

A further major development leap would ensue if spatial hearing could be restored. Since our ears are located a few centimeters apart, sound waves form a given source generally reach one ear before the other. The difference is only a few millionths of a second, but that is enough for the brain to localize the sound source. Modern microprocessors can react sufficiently fast, but a nerve impulse takes around one hundred times longer. To achieve a perfect interplay, new strategies need to be developed.

Modeling the auditory system

The perception of sound information begins in the inner ear. There, hair cells translate the mechanical vibrations into so-called action potentials, the language of nerve cells. Neural circuitry in the brain stem, mesencephalon and diencephalon transmits the signals to the auditory cortex, where around 100 million nerve cells are responsible for creating our perception of sound. Unfortunately, this "coding" is still poorly understood by science.

"Getting implants to operate more precisely will require strategies that are better geared to the information processing of the neuronal circuits in the brain. The prerequisite for this is a better understanding of the auditory system," explains Professor Werner Hemmert, director of the Department for Bio-Inspired Information Processing, at the TUM Institute of Medical Engineering (IMETUM).

Based on physiological measurements of neurons, his working group successfully built a computer model of acoustic coding in the inner ear and the neuronal information processing by the brain stem. This model will allow the researchers to further develop coding strategies and test them in experiments on people with normal hearing, as well as people carrying implants.

The fast track to better hearing aids

For manufacturers of cochlear implants collaborating with the TUM researchers, these models are very beneficial evaluation tools. Preliminary testing at the computer translates into enormous time and cost savings. "Many ideas can now be tested significantly faster. Then only the most promising processes need to be evaluated in cumbersome patient trials," says Werner Hemmert. The new models thus have the potential to significantly reduce development cycles. "In this way, patients will benefit from better devices sooner."


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Nicoletti, Chr. Wirtz, W. Hemmert. Modeling Sound Localization with Cochlear Implants. The Technology of Binaural Listening, pp 309-331; 2013 DOI: 10.1007/978-3-642-37762-4_12

Cite This Page:

Technische Universitaet Muenchen. "Understanding hearing." ScienceDaily. ScienceDaily, 2 December 2013. <www.sciencedaily.com/releases/2013/12/131202134816.htm>.
Technische Universitaet Muenchen. (2013, December 2). Understanding hearing. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/12/131202134816.htm
Technische Universitaet Muenchen. "Understanding hearing." ScienceDaily. www.sciencedaily.com/releases/2013/12/131202134816.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins