Featured Research

from universities, journals, and other organizations

Competition in rough neighborhood: Plant success in desert environment

Date:
December 31, 2013
Source:
American Journal of Botany
Summary:
In deserts, variable weather is common so that plant community patterns can change between wet and dry years, with high densities and a diversity of plants in wet years, and a reduction in both quantity and number of species in dry years. The effect that two important variables have on plant communities -- competition and water usage -- was investigated in the Sonoran Desert by a research group at the University of Arizona.

Many people think of deserts as inhospitable places devoid of life, but numerous plants and animals have adapted to this harsh environment, where they often compete for limited resources. In desert environments, the most limited resource is usually water, forcing plants to adopt different strategies to compete with their neighbors for this precious resource.

In natural environments, water availability is often stochastic -- some years and localities receive lots of rain, while other areas and times remain dry. During dry years, plants that are more efficient with water use often are the most successful. With this success comes a trade-off; in wetter years, these efficient plants may struggle against faster-growing plants.

For deserts, variable weather is common so that plant community patterns can change between wet and dry years, with high densities and a diversity of plants in wet years, and a reduction in both quantity and number of species in dry years. The effect that two important variables have on plant communities -- competition and water usage -- was investigated in the Sonoran Desert by a research group at the University of Arizona and published in a recent issue of the American Journal of Botany.

Jennifer Gremer and colleagues looked at three widespread and abundant plants native to the Sonoran Desert that use different strategies to cope in this variable desert environment by occupying different positions on a trade-off spectrum between relative growth rate and water use efficiency. They interpreted how well plants responded to different conditions, such as high and low water availability and competition, by measuring plant biomass of shoots, stems, and roots.

With the onset of climate change, the deserts are getting hotter and drier, and have been a focus of global change models. "The Sonoran Desert has already begun to exhibit such changes," explains Gremer. "Specifically, the composition of plant communities has changed over the last 30 years, with species that have high water-use efficiency becoming more common and species with high relative growth rates declining."

The research showed that all species did better in wet environments when grown alone; however, water availability had additional effects when competition was included. Species that have faster growth rates were less affected by competition in wet environments, whereas those more efficient with water were less affected in dry environments.

"These observed effects explain the patterns seen in long-term data and are counterintuitive to many readers because some plants might actually do better when conditions are not optimal," explains Gremer. In most settings of this research, though, the intermediate species had the largest competitive effect of all species. The intermediate was also observed to have a high level of intraspecific competitiveness, suggesting a reason why the intermediate does not competitively exclude other species.

Their results demonstrate that some plants are better at competing in wet environments, while others are better in dry environments. They were able to predict this pattern by looking at important characteristics, efficiency of water use and growth rate, to determine how they would react to limited resources. This has implications on future studies. According to Gremer, "A major challenge in ecology is to find traits or characteristics that can be used as indicators to predict how plants will respond without having to study each and every individual species. In our system, we have had remarkable success at doing that." However, these traits may not be the most important factors in all systems. Increased understanding of how these traits mediate competition under different conditions, for both native and non-native plants, is important considering the threats of climate change and invasive species.

"We need to understand the role of competition and water availability in long-term patterns of diversity in our system," Gremer said. "This has implications for understanding responses to climate change and predicting what these communities will look like in the future."


Story Source:

The above story is based on materials provided by American Journal of Botany. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. R. Gremer, S. Kimball, K. R. Keck, T. E. Huxman, A. L. Angert, D. L. Venable. Water-use efficiency and relative growth rate mediate competitive interactions in Sonoran Desert winter annual plants. American Journal of Botany, 2013; 100 (10): 2009 DOI: 10.3732/ajb.1300064

Cite This Page:

American Journal of Botany. "Competition in rough neighborhood: Plant success in desert environment." ScienceDaily. ScienceDaily, 31 December 2013. <www.sciencedaily.com/releases/2013/12/131231122139.htm>.
American Journal of Botany. (2013, December 31). Competition in rough neighborhood: Plant success in desert environment. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2013/12/131231122139.htm
American Journal of Botany. "Competition in rough neighborhood: Plant success in desert environment." ScienceDaily. www.sciencedaily.com/releases/2013/12/131231122139.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins