Featured Research

from universities, journals, and other organizations

Prediction of future flu virus

Date:
January 9, 2014
Source:
Lomonosov Moscow State University
Summary:
The differences in the seasonal flu usually result from point mutations in the influenza virus genes, while major pandemics are often connected to profound genetic shifts known as reassortments. The link between these two phenomena has now been studied for the first time.

Every year, influenza outbreaks claim hundreds of thousands of human lives. Though vaccination against flu is fairly efficient, the disease is difficult to exterminate because of the high evolutionary rate of the flu virus. Every year, new flu strains spread over the planet that differ slightly from those that were common a year before, which helps the virus to escape the immune response, and possibly compromises the efficiency of anti-viral drugs.

Furthermore, from time to time, a drastically new strain appears, posing a threat of human pandemic. Both processes are due to changes in the viral genome, but of a different degree. The differences in the seasonal flu usually result from point mutations in the influenza virus genes, while major pandemics are often connected to profound genetic shifts known as reassortments. The link between these two phenomena was for the first time studied by the Russian research team from the Faculty of Bioengineering and Bioinformatics of the Moscow State University (MSU) in collaboration with the Central Research Institute of Epidemiology and the Institute for Information Transmission Problems of the Russian Academy of Sciences (IITP). One of the authors, professor Alexey Kondrashov, is also affiliated with the University of Michigan. The results were published on January 9 in PLoS Genetics.

Georgii Bazykin, the corresponding author on the paper, who is a leading researcher at the Faculty of Bioengineering and Bioinformatics at the MSU and the head of the Molecular Evolution division at IITP, explains: "Influenza virus genome consists not of a single DNA or RNA molecule as many other viruses do, but of eight individual segments resembling in some sense the chromosomes of the human genome. Every segment is a separate RNA molecule." If different strains co-infect a single cell, their genomes may exchange these segments in a process called reassortment. This may lead to emergence of a novel genome consisting, for instance, of three segments obtained from one viral genome and five segments from another.

"Most major flu epidemics that we know were caused by such reassortments, -- proceeds Bazykin. -- When you analyze the strains that have caused these outbreaks, you find that they had combinations of viral genome segments that were never seen together before. This was the case for the 1957 and the 1968 pandemics, as well as for the swine flu in 2009. The deadliest Spanish flu pandemic of 1918 had probably the same nature, although it is hard to be certain for the events so distant in time."

A reassortment may produce a highly virulent strain, because a strong genetic shift makes it "unfamiliar" to the immune system of most humans, which allows the virus to spread efficiently throughout the population.

This is the evolutionary scenario known as antigenic shift. Another path, known as antigenic drift, is a process of gradual accumulation of smaller mutations. These mutations cause changes in the viral antigenic proteins, primarily, the surface antigens hemagglutinin (HA) and neuraminidase (NA). The genes coding for these proteins evolve rapidly in the course of the arms race between the virus and immune system.

"The seasonal flu outbreaks are primarily caused by this antigenic drift, -- explains Georgii Bazykin. -- Hence every year many of us catch a flu caused by a new strain of the constantly evolving virus."

The relationship between these two processes, -- antigenic shift and antigenic drift, -- has never been studied before. To fill this gap, Russian researchers first aimed on localizing the reassortments that the virus had experienced during its evolution. They considered the Influenza A H3N2 virus that entered the human population in 1968. Using a data base containing 1376 sequenced viral genomes, they used bioinformatic techniques to reconstruct the history of reassortments, and to pinpoint the reassortments on the evolutionary tree of the virus. They then checked the hypothesis that genetic shift causes subsequent genetic drift; i.e., that reassortments increase the frequency of smaller, point mutations that appear when individual nucleotides are replaced. The hypothesis was supported by the data: indeed, a reassortment increases the subsequent rate of single-nucleotide substitutions.

"We believe that this effect is connected to the fact that reassorted genes have to operate in a new genetic environment, -- says Bazykin. -- Since genes are connected to each other, if gene A has changed, a new version of gene B is also likely to be preferable. As a result, every reassortment event is followed by a trail of additional point mutations."

Since reassortments produce the most virulent pandemic-causing strains, the results of this work may be relevant to prediction of the future emergence of such potentially dangerous outbreaks.


Story Source:

The above story is based on materials provided by Lomonosov Moscow State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexey D. Neverov, Ksenia V. Lezhnina, Alexey S. Kondrashov, Georgii A. Bazykin. Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Genes. PLoS Genetics, 2014; 10 (1): e1004037 DOI: 10.1371/journal.pgen.1004037

Cite This Page:

Lomonosov Moscow State University. "Prediction of future flu virus." ScienceDaily. ScienceDaily, 9 January 2014. <www.sciencedaily.com/releases/2014/01/140109175742.htm>.
Lomonosov Moscow State University. (2014, January 9). Prediction of future flu virus. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2014/01/140109175742.htm
Lomonosov Moscow State University. "Prediction of future flu virus." ScienceDaily. www.sciencedaily.com/releases/2014/01/140109175742.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins