Featured Research

from universities, journals, and other organizations

Short circuit in molecular switch intensifies pain

Date:
January 14, 2014
Source:
KU Leuven
Summary:
While searching for novel painkillers, researchers came to the surprising conclusion that some candidate drugs actually increase pain. In a study published, the researchers show that a molecular switch in the nerves responsible for detecting pain can 'short-circuit', thus aggravating the onset of pain.

Pain functions as an important alarm signal. It alerts us to potential bodily harm -- a hot or sharp object, for example -- and motivates us to withdraw from damaging situations. At the cellular level, pain involves the stimulation of a network of pain nerves spread through the skin, mucosa and bodily organs.

Embedded in the cell wall surrounding these nerves are ion channels. These tiny, microscopic pathways respond to stimuli such as extreme cold or heat, mechanical pressure or harmful chemicals. When ion channels open, an electrical signal is created, transmitted to the brain, and interpreted as pain.

In previous research, the team of KU Leuven researchers led by Professor Thomas Voets (Laboratory of Ion Channel Research) and Professor Joris Vriens (Laboratory of Obstetrics and Experimental Gynaecology) discovered that a particular ion channel -- TRPM3 -- acts as a molecular fire detector: the ion channel detects heat and the hormone pregnenolone sulfate, a precursor to the sex hormones estrogen and testosterone and a trigger for pain and inflammation. In the present study, the researchers were looking for TRPM3 inhibitors that could potentially be used as painkillers.

Short circuit

Surprisingly, their results show that a number of drugs meant as painkillers actually increased pain in mice tested in the study, says Professor Voets: "Normally, when the ion channel is closed, no electrical signal is sent to the brain and therefore no pain is detected. But we found that pain can indeed occur despite a closed ion channel. How? A short circuit in the ion channel. When short-circuiting occurs, the electrical signal effected by a stimulus does not follow the normal pathway through the central pore of the ion channel. Instead, it navigates an alternative path through the surrounding material. This 'electrical leak' activates the pain nerves, thus increasing the sensation of pain. This may explain the pain-enhancing side effects of some drugs -- such as clotrimazole, a common remedy for yeast infections that often causes unpleasant side effects such as irritation and burning sensations."

"It is striking that short circuits in the ion channel only occur at high hormone levels. This could explain why some patients experience these side effects while others do not," says Professor Voets. The researchers hope this new knowledge about TRPM3-dependent pain will contribute to the development of new painkillers with fewer painful side effects.


Story Source:

The above story is based on materials provided by KU Leuven. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joris Vriens, Katharina Held, Annelies Janssens, Balαzs Istvαn Tσth, Sara Kerselaers, Bernd Nilius, Rudi Vennekens, Thomas Voets. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nature Chemical Biology, 2014; DOI: 10.1038/nchembio.1428

Cite This Page:

KU Leuven. "Short circuit in molecular switch intensifies pain." ScienceDaily. ScienceDaily, 14 January 2014. <www.sciencedaily.com/releases/2014/01/140114103044.htm>.
KU Leuven. (2014, January 14). Short circuit in molecular switch intensifies pain. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/01/140114103044.htm
KU Leuven. "Short circuit in molecular switch intensifies pain." ScienceDaily. www.sciencedaily.com/releases/2014/01/140114103044.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) — Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) — New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins