Featured Research

from universities, journals, and other organizations

Electrical current sensors harvest wasted electromagnetic energy

Date:
January 27, 2014
Source:
The Hong Kong Polytechnic University
Summary:
Electricity is the lifeblood of modern cities. It flows at every moment and everywhere to power up everything from home appliances which improve our comfort and convenience, to services like transportation, building, communication and manufacturing that are essential to our daily life. To ensure a reliable operation of power grids and a proper delivery of electricity to where it needs to be, it is crucial to have a loyal guard to keep watch on the activities of electricity transport. As technology advances, the safety, reliability and availability of electrical engineering assets and public utilities can now be guarded by one tiny chip of electrical current sensors.

These smart wireless sensors can now reach hard-to-access locations such as rails where conventional sensors are either impossible or not cost effective.
Credit: Image courtesy of The Hong Kong Polytechnic University

Electricity is the lifeblood of modern cities. It flows at every moment and everywhere to power up everything from home appliances which improve our comfort and convenience, to services like transportation, building, communication and manufacturing that are essential to our daily life. To ensure a reliable operation of power grids and a proper delivery of electricity to where it needs to be, it is crucial to have a loyal guard to keep watch on the activities of electricity transport. As technology advances, the safety, reliability and availability of electrical engineering assets and public utilities can now be guarded by one tiny chip of electrical current sensors.

Related Articles


Measuring about 1 mm in thickness, the chip is a masterpiece by Professor Derek Siu-wing Or and his research team in the Department of Electrical Engineering of The Hong Kong Polytechnic University. The chip can be placed on any sensing point of interest such as electrical cables, conductors, junctions, bus bars, etc. to detect electrical currents. What's more, it does not necessitate the use of additional power supplies and signal conditioners which are generally required by traditional current sensors such as Hall sensors, reluctance coils, etc.

According to Professor Or, the chip is an amazing work of advanced functional materials. Made from rare earth multiferroics with giant magnetoelectric properties, the chip enables a direct detection of magnetic fields generated by electricity and a linear conversion of these magnetic fields into electrical voltage signals. The amplitude of the converted signals is linearly proportional to the magnetic fields, while their frequency exactly follows the magnetic fields. The "magnetoelectric smart material," as called by the team, is then specially engineered into "self-sustainable magnetoelectric smart sensors" that recognize telltale changes of electrical currents within electrical equipment. It is as simple as using a thermometer to give temperatures.

The exciting part is that Professor Or and his team have got rid of power supplies and signal conditioners from traditional current sensors. When power and signal conditioning requirements are eliminated, the smart sensors do not have power cords and electronic active components. They can be conveniently, safely and reliably used for early fault detection in unthinkable territories.

Professor Or explained, "Our smart sensors are essentially simple, totally passive and capable of producing large and clear output voltage signals which are 2,000 times higher than the traditional current sensors. This passive and self-sustainable nature allows real-time, nonstop monitoring of the 'health' of electrical equipment, including those carrying high voltages, heavy currents and/or strong electromagnetic fields.

"Besides, these smart sensors can be tailored to harvest electromagnetic radiations emitted by the electrical equipment being monitored and to turn them into useful electrical energy. The stored electrical energy can be used to power up microcontrollers, displays, wireless transmitters, etc., further advancing the smart sensor technology toward 'energy-harvesting smart wireless sensors'."

The smart wireless sensors are being tested in electrical traction systems on trains in both Hong Kong and Singapore to provide in-situ monitoring of traction conditions and to detect electrical faults that may bring train services to a halt.

The benefits of the smart wireless sensor innovation go well beyond these advantages. For example, smart wireless sensors can now reach hard-to-access locations such as rails, tunnels, high-rises, underground premises, meter rooms, etc., where hardwired power cords and signal cables are either impossible or not cost effective. Another example is that the patented technology allows quick detection of malfunctions of ventilation fans inside tunnels, reducing the need of tunnel services suspension.

The journey does not end here; in fact, the research team is working further to perfect the technology. Professor Or said, "We aim to enhance the energy harvesting capability while making the smart sensors even more sensitive and reliable in measurement." Their research work has been supported by E-T-A Elektrotechnische Apparate GmbH (E-T-A) through a EUR500,000 fund. As a global leader in electrical circuit protection, the German company focuses on advancing electrical circuit protection technology. Professor Or and E-T-A are working together to embed the smart wireless sensor technology in new generation electrical circuit protection products that would meet the highest standards in terms of innovation, safety, reliability and efficiency.

A leading power company has engaged Professor Or and his research team in a large scale project to supply, test and commission a significant amount of smart sensors for use in substations. Imagine a power cable that would beep when it is sick and beep even louder when it is about to give out. In the near future, our power grids can be smarter than they currently are.


Story Source:

The above story is based on materials provided by The Hong Kong Polytechnic University. Note: Materials may be edited for content and length.


Cite This Page:

The Hong Kong Polytechnic University. "Electrical current sensors harvest wasted electromagnetic energy." ScienceDaily. ScienceDaily, 27 January 2014. <www.sciencedaily.com/releases/2014/01/140127100701.htm>.
The Hong Kong Polytechnic University. (2014, January 27). Electrical current sensors harvest wasted electromagnetic energy. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2014/01/140127100701.htm
The Hong Kong Polytechnic University. "Electrical current sensors harvest wasted electromagnetic energy." ScienceDaily. www.sciencedaily.com/releases/2014/01/140127100701.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins