Featured Research

from universities, journals, and other organizations

Designer proteins provide new information about body's signal processes

Date:
January 29, 2014
Source:
University of Copenhagen
Summary:
Researchers can radically alter the properties of proteins by redesigning their chemical structure. New fundamental research based on designer proteins highlights important communication processes in the human body. In the long term, this new knowledge may lead to pharmaceuticals with fewer side effects.

Proteins play a fundamental role in almost all biological processes. They consist of chains constructed of up to 20 different amino acids, and their composition, structure and function are controlled by the genetic code. Brilliant minds at the Center for Biopharmaceuticals are now attempting to rewrite the core function of proteins by making alterations in their molecular backbone, for example. By combining biological and chemical methods, researchers are able to design semi-synthetic proteins with almost no regard to the limitations of nature:

Related Articles


"Proteins can be regulated to perform specific biochemical tasks. We have used a technology that allows us to make changes to the molecular backbone of the protein and have thus created 22 completely new designer proteins on the basis of recognised material. Using advanced chemical-biological methods, we made the minuscule changes to the backbone of one of the most frequently occurring protein domains -- a kind of fixed, independent module that features in a range of proteins. We then examined how the designer proteins bind to other proteins in the body, which allowed us to analyse the role of the specific protein domain in the body's vital signal processes," relates Søren W. Pedersen, postdoc.

All the cells in the body communicate via receptor proteins that are located in the cell membrane. This activates proteins inside the cell, causing specific effects which, in turn, stimulate the body to execute a variety of functions.

"Our designer proteins show us precisely how and where a bond is formed. This provides unique molecular understanding of the protein domain and a number of key protein bonds in the organism. For example the designer proteins bind to a range of receptors in the body -- receptor interactions that are important targets for pharmaceuticals intended to treat stroke, pain and depression. The new findings mean that in the long term, we will be able to design pharmaceuticals that bind more strongly and more accurately to specific sites in the organism."

The fundamental findings have just been published in the scientific journal Nature Communications.

From 'on/off switch' to 'advanced dimmer'

Pharmaceuticals generally function by binding to a specific receptor that is involved in a given illness process -- thus halting the damaging effect. Unfortunately, this strategy often generates side effects as the process simultaneously shuts down a number of beneficial functions. In recent years, interest has therefore arisen in a different strategy in which the pharmaceutical does not affect the receptor directly, but alters the interactions that the receptor has with proteins inside the cell. In other words, instead of simply switching the function of the receptor on and off, the objective is now to control parts of the receptor's effects. It is here that designer proteins can come to play a key role:

"The capacity to manipulate proteins has led to important breakthroughs in biotechnology and biomedicine. Proteins can often target specific processes in the cells with a high degree of accuracy -- and at the Center for Biopharmaceuticals we are combining chemical synthesis and biological processes to find out more about the molecular interactions that may be of significance to biological pharmaceuticals," explains Professor Kristian Strømgaard, head of the Center for Biopharmaceuticals at the University of Copenhagen.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Søren W. Pedersen, Stine B. Pedersen, Louise Anker, Greta Hultqvist, Anders S. Kristensen, Per Jemth, Kristian Strømgaard. Probing backbone hydrogen bonding in PDZ/ligand interactions by protein amide-to-ester mutations. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4215

Cite This Page:

University of Copenhagen. "Designer proteins provide new information about body's signal processes." ScienceDaily. ScienceDaily, 29 January 2014. <www.sciencedaily.com/releases/2014/01/140129075911.htm>.
University of Copenhagen. (2014, January 29). Designer proteins provide new information about body's signal processes. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2014/01/140129075911.htm
University of Copenhagen. "Designer proteins provide new information about body's signal processes." ScienceDaily. www.sciencedaily.com/releases/2014/01/140129075911.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) — Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins