Featured Research

from universities, journals, and other organizations

Immune system 'overdrive' in pregnant women puts male offspring at special risk for adult brain disorders, mouse study suggests

Date:
February 6, 2014
Source:
Johns Hopkins Medicine
Summary:
Researchers report that fetal mice — especially males — show signs of brain damage that lasts into their adulthood when they are exposed in the womb to a maternal immune system kicked into high gear by a serious infection or other malady. The findings suggest that some neurologic diseases in humans could be similarly rooted in prenatal exposure to inflammatory immune responses.

Johns Hopkins researchers report that fetal mice -- especially males -- show signs of brain damage that lasts into their adulthood when they are exposed in the womb to a maternal immune system kicked into high gear by a serious infection or other malady. The findings suggest that some neurologic diseases in humans could be similarly rooted in prenatal exposure to inflammatory immune responses.

Related Articles


In a report on the research published online last week in the journal Brain, Behavior and Immunity, the investigators say that the part of the brain responsible for memory and spatial navigation (the hippocampus) was smaller over the long term in the male offspring exposed to the overactive immune system in the womb. The males also had fewer nerve cells in their brains and their brains contained a type of immune cell that shouldn't be present there.

"Our research suggests that in mice, males may be more vulnerable to the effects of maternal inflammation than females, and the impact may be life long," says study leader Irina Burd, M.D., Ph.D., an assistant professor of gynecology/obstetrics and neurology at the Johns Hopkins University School of Medicine and director of the Integrated Research Center for Fetal Medicine. "Now we wonder if this could explain why more males have diseases such as autism and schizophrenia, which appear to have neurobiological causes."

For the study, researchers sought to mimic the effects of a maternal infection or other condition that causes inflammation in a pregnant mother. This type of inflammation between 18 and 32 weeks of gestation in humans has been linked to preterm birth as well as an imbalance of immune cells in the brain of the offspring and even death of nerve cells in the brains of those children. Burd and her colleagues used a mouse model to study what happens to the brains of those offspring as they age into adulthood to see if the effects persisted.

One group of pregnant mice got saline injections into the womb, while another group got injections of lipopolysaccharide (LPS), a toxin meant to generate the kind of inflammatory effects of E. coli bacteria without the presence of the germ itself.

Soon after birth, the LPS group showed poor motor skills and behavioral issues such as hyperactivity. At 60 days post-weaning -- the equivalent of mouse adulthood -- the LPS mice could walk well, but were still hyperactive, suggesting the motor problems had resolved, possibly through some type of rewiring of the brain, but the behavioral problems had not.

"All this time later, something was still going on in their brains," Burd says.

The sex-specific differences -- the smaller hippocampus, the presence of fewer nerve cells, the existence of immune system macrophages in places they shouldn't be -- were also found in adulthood.

Chronic inflammation, Burd says, may play a role in keeping the hippocampus small, potentially because it inhibits proper brain development. But why males and females respond differently to the same insult in utero remains a question.

Unraveling the sex-based mechanisms underlying the response to maternal inflammation could provide critical knowledge necessary to develop interventions and potentially new drug therapies, she says.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tahani Dada, Jason M. Rosenzweig, Mofeedah Al Shammary, Wance Firdaus, Shorouq Al Rebh, Talaibek Borbiev, Aylin Tekes, Jiangyang Zhang, Eman Alqahtani, Susumu Mori, Mikhail V. Pletnikov, Michael V. Johnston, Irina Burd. Mouse model of intrauterine inflammation: Sex-specific differences in long-term neurologic and immune sequelae. Brain, Behavior, and Immunity, 2014; DOI: 10.1016/j.bbi.2014.01.014

Cite This Page:

Johns Hopkins Medicine. "Immune system 'overdrive' in pregnant women puts male offspring at special risk for adult brain disorders, mouse study suggests." ScienceDaily. ScienceDaily, 6 February 2014. <www.sciencedaily.com/releases/2014/02/140206141851.htm>.
Johns Hopkins Medicine. (2014, February 6). Immune system 'overdrive' in pregnant women puts male offspring at special risk for adult brain disorders, mouse study suggests. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2014/02/140206141851.htm
Johns Hopkins Medicine. "Immune system 'overdrive' in pregnant women puts male offspring at special risk for adult brain disorders, mouse study suggests." ScienceDaily. www.sciencedaily.com/releases/2014/02/140206141851.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins