Featured Research

from universities, journals, and other organizations

Energy harvesting takes wing in merger of engineering and biology

Date:
February 13, 2014
Source:
Northern Arizona University
Summary:
A bird flapping its wings or a fish’s deep dive may be pictures of nature in action, but in their elegant simplicity scientists see the complex challenges of merging technology with a biological system. The motion of animals could power small devices that allow biologists to collect information about behavior that eludes them under the limitations of current technology.

A backpack with piezoelectric material generates energy from the motion of a bird’s wings in flight.
Credit: Michael Shafer

A bird flapping its wings or a fish's deep dive may be pictures of nature in action, but in their elegant simplicity Michael Shafer sees the complex challenges of merging technology with a biological system.

Related Articles


As an engineer interested in energy harvesting, Shafer also knows that animal movement offers opportunity, at least on a limited scale. While solar panel arrays and towering windmills generate electricity from natural forces, a pod of dolphins with battery packs isn't going to light a city.

But the motion of animals could power small devices that allow biologists to collect information about behavior that eludes them under the limitations of current technology.

"I'm trying to take energy that's all around us -- differences in temperature, mechanical energy, kinetic energy -- and convert it into something useful," said Shafer, assistant professor of mechanical engineering at Northern Arizona University.

As a Ph.D. student at Cornell, Shafer helped bring that vision into reality by developing what is essentially a bird backpack: an ultra-light device that generates power through the flapping of a bird's wings. A piezoelectric material -- one that produces electricity when pressure is applied -- lies at the heart of the device.

Today, having returned to his undergraduate alma mater, Shafer is investigating ideas beyond birds, such as terrestrial and marine applications. But he continues to apply the lessons he has learned, including his use of a systems approach to solve engineering problems and establishing a two-way channel of communication with biologists.

"If I were going to design an energy harvester for a building system, or a static remote sensor on a bridge, that can be challenging," Shafer said. "But it's much harder to take that system and apply it to an animal."

In the case of birds, the biggest limitation was the small amount of weight they can carry. Most weigh less than 100 grams and can carry only about four percent of their own mass.

"If I have a bird flapping at a certain frequency that can carry only so much mass, I have to ask how I can design something to maximize power given those conditions," Shafer said. "There isn't much margin for error."

Shafer points to a "confluence of technologies" that is making energy harvesting more accessible. The field is not new, with research having been conducted on solar, piezoelectric, kinetic, electromagnetic, thermoelectric and other processes. But progress is occurring rapidly.

"What has really created viability for the technology and really spurred people to investigate energy harvesting is a precipitous decline in the power consumption of microelectronics," Shafer said. "Now low energy sources are suddenly starting to become viable as a method of powering electronics."

Yet as technological advances make smaller devices possible, Shafer must always consider "second order" effects, such as not creating too much drag on an animal and fabricating a device that biologists can handle easily.

"Animals don't have a great way of putting on an engineering system," Shafer said. "Form factor is a big driver -- the system has to fit the animal. That's really where you start going to the biologists, and there's a lot of back and forth."


Story Source:

The above story is based on materials provided by Northern Arizona University. Note: Materials may be edited for content and length.


Cite This Page:

Northern Arizona University. "Energy harvesting takes wing in merger of engineering and biology." ScienceDaily. ScienceDaily, 13 February 2014. <www.sciencedaily.com/releases/2014/02/140213142111.htm>.
Northern Arizona University. (2014, February 13). Energy harvesting takes wing in merger of engineering and biology. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2014/02/140213142111.htm
Northern Arizona University. "Energy harvesting takes wing in merger of engineering and biology." ScienceDaily. www.sciencedaily.com/releases/2014/02/140213142111.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins