Featured Research

from universities, journals, and other organizations

Rebuilding the brain after stroke

Date:
February 13, 2014
Source:
Henry Ford Health System
Summary:
Enhancing the brain's inherent ability to rebuild itself after a stroke with molecular components of stem cells holds enormous promise for treating the leading cause of long-term disability in adults.

Enhancing the brain's inherent ability to rebuild itself after a stroke with molecular components of stem cells holds enormous promise for treating the leading cause of long-term disability in adults.

Michael Chopp, Ph.D., Scientific Director of the Henry Ford Neuroscience Institute, will present this approach to treating neurological diseases Thursday, Feb. 13, at the American Heart Association's International Stroke Conference in San Diego.

Although most stroke victims recover some ability to voluntarily use their hands and other body parts, half are left with weakness on one side of their body, and a substantial number are permanently disabled.

No treatment currently exists for improving or restoring this lost motor function in stroke patients, mainly because of mysteries about how the brain and nerves repair themselves.

But Dr. Chopp and other Henry Ford scientists may have solved some of these mysteries through experiments at the molecular level identifying and testing components of stem cells.

"Even in older people, the central nervous system is highly plastic, meaning it has a unique ability to change and rebuild itself," Dr. Chopp explains. "We have demonstrated that this plasticity can be stimulated to promote neurological recovery after a stroke."

One such therapy involves proteins that shape the developing brain, specifically a type that releases tissue plasminogen activator, or tPA, which causes axons and dendrites -- the brain's neural cables and communications network -- to rewire.

"We have shown that administering tPA in a nasal spray promotes this rewiring and significantly enhances neurological recovery," Dr. Chopp says.

Dr. Chopp will also speak at the AHA conference about other microscopic material in stem cells called exosomes that offer a "robust" treatment for stroke's crippling effects.

These blister-like microscopic "bubbles" were once were thought to carry and get rid of "old" proteins that were no longer needed by the body. However, exosomes were recently found to provide an essential form of "communication" between brain cells using "packages" sent out by stem cells with vital directions for gene regulation.

This is done through microRNA, master molecular switches that alter brain cells and promote recovery from trauma.

Dr. Chopp and his team have shown and confirmed that stem cell therapy works by firing off these "information bullets."

But they have also shown that neurological diseases can be treated with exosomes alone, separate from stem cells. "This approach may be a revolutionary way to successfully treat stroke and many other diseases," Dr. Chopp says.


Story Source:

The above story is based on materials provided by Henry Ford Health System. Note: Materials may be edited for content and length.


Cite This Page:

Henry Ford Health System. "Rebuilding the brain after stroke." ScienceDaily. ScienceDaily, 13 February 2014. <www.sciencedaily.com/releases/2014/02/140213153536.htm>.
Henry Ford Health System. (2014, February 13). Rebuilding the brain after stroke. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2014/02/140213153536.htm
Henry Ford Health System. "Rebuilding the brain after stroke." ScienceDaily. www.sciencedaily.com/releases/2014/02/140213153536.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins