Featured Research

from universities, journals, and other organizations

Researchers home in on Alzheimer's disease: Supercomputer helps guide new drug designs

Date:
February 18, 2014
Source:
University of California, San Diego
Summary:
Researchers studying peptides using a supercomputer have found new ways to elucidate the creation of the toxic oligomers associated with Alzheimer’s disease.

Single amyloid-beta monomers can pair up to form a variety of dimers that can aggregate into larger peptide rings that reside on cell membranes such as those pictured. This process has been implicated in the development of Alzheimer’s disease. This visualization shows the possible rings which have the most favorable energies of interactions with the membrane. The residues are colored white to represent apolar or hydrophobic areas, green for the polar or hydrophilic areas, blue to show a positive charge, and red to show a negative charge.
Credit: Image by Igor Tsigelny, SDSC and UC San Diego; Eliezer Masliah, UC San Diego

Researchers studying peptides using the Gordon supercomputer at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego (UCSD) have found new ways to elucidate the creation of the toxic oligomers associated with Alzheimer's disease.

Igor Tsigelny, a research scientist with SDSC, the UCSD Moores Cancer Center, and the Department of Neurosciences, focused on the small peptide called amyloid-beta, which pairs up with itself to form dimers and oligomers.

The scientists surveyed all the possible ways to look at the dynamics of conformational changes of these peptides and the possibility that they might organize into the oligomers theorized to be responsible for the degenerative brain disease. In the February 14 issue of the Journal of Alzheimer's Disease, the researchers suggest their results may generate new targets for drug development.

"Our research has identified amino acids for point mutations that either enhanced or suppressed the formation and toxicity of oligomer rings," said Tsigelny, the study's lead author. "Aggregation of misfolded neuronal proteins and peptides may play a primary role in neurodegenerative disorders, including Alzheimer's disease."

Tsigelny also noted that recent improvements in computational processing speed have allowed him and other researchers to use a variety of tools, including computer simulations, to take new approaches to examining amyloid-beta, which has proven too unstable for traditional approaches such as x-ray crystallography.

The researchers investigated the single and dimer forms of the peptide with a combination of computational methods including molecular dynamics, molecular docking, molecular interactions with the membrane, as well as mutagenesis, biochemical, and electron microscopy studies. They then looked at how those dimers interacted with additional peptides and which larger structures resulted. The researchers found that depending on their configurations, some dimers did not lead to any further oligomerization and some form toxic oligomers implicated in the development of Alzheimer's disease.

"Remarkably, we showed a greater diversity in amyloid-beta dimers than previously described," said Eliezer Masliah, professor of pathology and medicine at UC San Diego, and a member of the research team. "Understanding the structure of amyloid-beta dimers might be important for the design of small molecules that block formation of toxic oligomers."

Based on their results, the researchers were able to identify key amino acids that altered the formation and toxicity of oligomer rings. "Our data is only theoretical, but there is a good chance the oligomers we have been modeling exist for real," noted Masliah. "Some important recent publications have come out that support our work."

The in silico experiments allowed the single amyloid-beta monomers to associate randomly, according to Masliah. However, he noted that within the brains of Alzheimer's patients, the formation of oligomers and fibrils depends on any number of biochemical influences such as peptide concentration, oxidation, neurotoxins, and acidity.

According to the researchers, their work implicates a more dynamic role for the amyloid-beta dimers than previously thought. It also suggests that the way dimers form and then grow into larger structures is a rapidly changing process.

"This, as well as previous results, suggests that targeting selected amyloid-beta dimers may be important in an effort to ameliorate the episodic memory described in mild cognitive impairment and the early stages of Alzheimer's disease," said Masliah.

Masliah and Tsigelny's collaborators included UC San Diego's Yuriy Sharikov, Valentina Kouznetsova, Jerry Greenberg, Wolfgang Wrasidlo, Tania Gonzalez, Paula Desplats, Sarah E. Michael, Margarita Trejo-Morales, and Cassia Overk.


Story Source:

The above story is based on materials provided by University of California, San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Igor F. Tsigelny, Yuriy Sharikov, Valentina L. Kouznetsova, Jerry P. Greenberg, Wolfgang Wrasidlo, Tania Gonzalez, Paula Desplats, Sarah E. Michael, Margarita Trejo-Morales, Cassia R. Overk, Eliezer Masliah. Structural Diversity of Alzheimer's Disease Amyloid-β Dimers and Their Role in Oligomerization and Fibril Formation. Journal of Alzheimer's Disease, 2014 DOI: 10.3233/JAD-131589

Cite This Page:

University of California, San Diego. "Researchers home in on Alzheimer's disease: Supercomputer helps guide new drug designs." ScienceDaily. ScienceDaily, 18 February 2014. <www.sciencedaily.com/releases/2014/02/140218153720.htm>.
University of California, San Diego. (2014, February 18). Researchers home in on Alzheimer's disease: Supercomputer helps guide new drug designs. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2014/02/140218153720.htm
University of California, San Diego. "Researchers home in on Alzheimer's disease: Supercomputer helps guide new drug designs." ScienceDaily. www.sciencedaily.com/releases/2014/02/140218153720.htm (accessed July 30, 2014).

Share This




More Mind & Brain News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins