Featured Research

from universities, journals, and other organizations

One gene influences recovery from traumatic brain injury

Date:
February 26, 2014
Source:
University of Illinois at Urbana-Champaign
Summary:
One change in the sequence of the BDNF gene causes some people to be more impaired by traumatic brain injury than others with comparable wounds, new research shows. The study measured general intelligence in a group of 156 Vietnam War veterans who suffered penetrating head injuries during the war. All of the study subjects had damage to the prefrontal cortex, a brain region behind the forehead that is important to cognitive tasks such as planning, problem-solving, self-restraint and complex thought. The team found that a single polymorphism (a difference in one “letter” of the sequence) in the BDNF gene accounted for significant differences in intelligence among those with similar injuries and comparable intelligence before being injured.

Researchers report that one tiny variation in the sequence of a gene may cause some people to be more impaired by traumatic brain injury (TBI) than others with comparable wounds.

The study, described in the journal PLOS ONE, measured general intelligence in a group of 156 Vietnam War veterans who suffered penetrating head injuries during the war. All of the study subjects had damage to the prefrontal cortex, a brain region behind the forehead that is important to cognitive tasks such as planning, problem-solving, self-restraint and complex thought.

The researchers controlled for the size and location of subjects' brain injuries and other factors, such as intelligence prior to injury, which might have contributed to differences in cognitive function. (Prior to combat, the veterans had completed the Armed Forces Qualifications Test, which included measures of intelligence that provided a baseline for the new analysis.)

"We administered a large, cognitive battery of tests to investigate how they performed after their injury," said study leader Aron Barbey, a professor of speech and hearing science, of psychology and of neuroscience at the University of Illinois. "And we had a team of neurologists who helped characterize the nature and scope of the patients' brain injuries."

The researchers also collected blood for a genetic analysis, focusing on a gene known as BDNF (brain-derived neurotrophic factor).

The team found that a single polymorphism (a difference in one "letter" of the sequence) in the BDNF gene accounted for significant differences in intelligence among those with similar injuries and comparable intelligence before being injured.

"BDNF is a basic growth factor and it's related to neurogenesis, the production of new neurons," Barbey said. "What we found is that if people have a specific polymorphism in the BDNF gene, they recovered to a greater extent than those with a different variant of the gene."

The change in the gene alters the BDNF protein: The amino acid methionine (Met) is incorporated at a specific site in the protein instead of valine (Val). Since people inherit two versions of each gene, one from each parent, they have either Val/Val, Val/Met or Met/Met variants of the gene.

"The effects of this difference were large -- very large," Barbey said. "If an individual had the Val/Val combination, then their performance on a battery of cognitive tests (conducted long after the injury occurred) was remarkably lower than that of individuals who had the Val/Met or Met/Met combination."

On average, those with the Val/Val polymorphism scored about eight IQ points lower on tests of general intelligence than those with the Val/Met or Met/Met variants, Barbey said. Those with the Val/Val variant also were significantly more impaired in "specific competencies for intelligence like verbal comprehension, perceptual organization, working memory and processing speed," he said.

To test these results, the researchers did the analysis over again "in a subset of individuals who had very similar (brain injuries) to the other group," Barbey said. "We found the same kind of effects, suggesting that lesion location isn't a factor influencing the difference between the groups."

The finding opens a new avenue of exploration for treatments to aid the process of recovery from TBI, Barbey said.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. The original article was written by Diana Yates. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aron K. Barbey, Roberto Colom, Erick Paul, Chad Forbes, Frank Krueger, David Goldman, Jordan Grafman. Preservation of General Intelligence following Traumatic Brain Injury: Contributions of the Met66 Brain-Derived Neurotrophic Factor. PLoS ONE, 2014; 9 (2): e88733 DOI: 10.1371/journal.pone.0088733

Cite This Page:

University of Illinois at Urbana-Champaign. "One gene influences recovery from traumatic brain injury." ScienceDaily. ScienceDaily, 26 February 2014. <www.sciencedaily.com/releases/2014/02/140226174538.htm>.
University of Illinois at Urbana-Champaign. (2014, February 26). One gene influences recovery from traumatic brain injury. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2014/02/140226174538.htm
University of Illinois at Urbana-Champaign. "One gene influences recovery from traumatic brain injury." ScienceDaily. www.sciencedaily.com/releases/2014/02/140226174538.htm (accessed August 30, 2014).

Share This




More Mind & Brain News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins