Featured Research

from universities, journals, and other organizations

The birds and the bees of proteins

Date:
March 5, 2014
Source:
Wake Forest University
Summary:
A split-second snapshot of an early stage of protein formation could someday lead to more effective antibiotics. Proteins are the worker bees of cells. They get rid of waste, transmit cellular signals and carry out the chemical reactions that enable the human body to function. Without proteins, cells would be unable to function, replicate, and die. Viruses, bacteria and cancer cells also need proteins to reproduce. Using computer modelling, researchers examined the role of one specific protein, and its ultimate effect on health.

The birth of a protein is one of the most fundamental aspects of life as we know it, yet, surprisingly, there is still a lot that scientists do not know about them.

Now split-second snapshots of this vital and mysterious process, developed by Samuel Cho, an assistant professor of physics and computer science, and senior Jessica Leuchter ('14), could someday lead to more effective antibiotics.

The birth of a protein

Proteins are the worker bees of cells. They get rid of waste, transmit cellular signals and carry out the chemical reactions that enable the human body to function. Without proteins, cells would be unable to function, replicate, and die.

This is not always a bad thing though, said Leuchter, a chemistry major who has been conducting research with Cho for two years. Viruses, bacteria and cancer cells need proteins to reproduce like everything else living in the human body.

Considering a 2013 CDC report noted that more than 2 million people get sick and roughly 23,000 people die each year as a result of drug-resistant bacterial infections, a new drug that could specifically target and halt protein formation in these malignant organisms would be a powerful tool for combatting diseases.

The problem with creating such a drug is scientists know very little about the microscopic environmental conditions and structures involved in creating proteins. This lack of awareness makes it difficult to identify targets inside a cell that drugs can be designed to attack.

Cho explained this is mostly due to the fact protein formation takes place at an incredibly small scale.

"Imagine the smallest thing you can think of and this is probably a lot smaller than that," Cho said. "The entire process occurs in a space 100 billion trillionth the size of a water droplet. Even the best microscopes we have are not powerful enough to study this in the lab."

Taking a closer look

This is where Cho and Leuchter's work comes in. They created a computer model that simulates a required protein called Methionyl-tRNA Synthetase at one of the very first stages of protein formation in an E. coli bacteria cell. Their model enables them to accurately simulate processes at the molecular scale and identify and characterize previously unknown structures and crucial details of the chemical reactions that can then be used as drug targets. Then, an experimentalist can verify the targets Cho and Leuchter identify as critical in the lab.

"Thankfully we have a collaborator in the chemistry department who is the foremost expert on Methionyl-tRNA Synthetase, Rebecca Alexander," Cho said. "It's really nice having the authority on the subject in the next building so that she can say yes we have identified a new target or no we haven't."

New ways to fight disease

Cho said the next step in the research will be to tweak the computer model so it can be used to examine other proteins.

"There are 20 other proteins similar to the one our model is designed to analyze," Cho said. "Hopefully by learning about this one we can apply some of the same approaches to other proteins."

Leuchter said figuring out how to disrupt the formation of different proteins via computer models is an important step towards coming up with new treatments for cancer.

"Our model could be fundamental in finding new pharmaceutical targets," she said. "It could also stop a defective protein from forming."

In addition, models like theirs can be used to develop new antibiotics to kill drug-resistant bacteria or "super-bugs."

"What if we could turn important reactions off in the bacteria?" Cho asked. "A clearer picture of what is actually going on inside a cell will help us figure out what is an important interaction in terms of making proteins and what isn't."


Story Source:

The above story is based on materials provided by Wake Forest University. The original article was written by Will Ferguson. Note: Materials may be edited for content and length.


Cite This Page:

Wake Forest University. "The birds and the bees of proteins." ScienceDaily. ScienceDaily, 5 March 2014. <www.sciencedaily.com/releases/2014/03/140305105946.htm>.
Wake Forest University. (2014, March 5). The birds and the bees of proteins. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2014/03/140305105946.htm
Wake Forest University. "The birds and the bees of proteins." ScienceDaily. www.sciencedaily.com/releases/2014/03/140305105946.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins