Featured Research

from universities, journals, and other organizations

Exploring Brain for Keys to Solving Parkinson's Disease

Date:
March 25, 2014
Source:
Rutgers Biomedical and Health Sciences
Summary:
One of the final frontiers of science is the human brain. The brain is the source of our intelligence, feelings and ability to make our bodies move – as well as the locus of terrible diseases such as Parkinson’s and Alzheimer’s – and is as complicated as any object that scientists explore. Parkinson’s disease, which experts say affects more than six million people around the world, can progressively degrade many of those functions, a primary reason why a team of researchers has been given a grant to delve ever more deeply into the circuitry and function of the striatum.

James M. Tepper points to a microscopic brain image that he is studying for potential clues to Parkinson's and other diseases.
Credit: Rob Forman, Rutgers Today

One of the final frontiers of science is the human brain. The brain is the source of our intelligence, feelings and ability to make our bodies move -- as well as the locus of terrible diseases such as Parkinson's and Alzheimer's -- and is as complicated as any object that scientists explore.

James M. Tepper, a professor of neuroscience at Rutgers University-Newark, is one of those explorers. For more than three decades, he and his colleagues have added to understanding of the brain and its innermost workings, much as explorers on ships added methodically to long-incomplete maps of the New World. The voyagers documented land masses and waterways. Tepper maps the myriad electrical impulses that course through the brain.

"It's a bit like someone handing you a circuit without a circuit diagram," Tepper explains, "but you have the circuit board in front of you, and you have volt meters and stimulators. Your job is to be able to decode the circuit and try to figure out what connects to what and, when it does connect there, what does it do."

So intricate is Tepper's work that he doesn't even study the entire brain. His territory is the striatum, the largest portion of the basal ganglia, a set of structures below the cerebral cortex involved in voluntary motor behavior as well as cognition, learning and memory, emotion and motivation.

Parkinson's disease, which experts say affects more than six million people around the world, can progressively degrade many of those functions, a primary reason why last September the National Institutes of Health awarded Tepper a five-year, $3.4 million grant to delve ever more deeply into the circuitry and function of the striatum.

"The NIH is well aware that the basal ganglia probably hold the key to finding a pathway to curing Parkinson's," says Denis Parι, director of the Center for Molecular and Behavioral Neuroscience at Rutgers University-Newark. "Jim Tepper has distinguished himself over many years as a leader in unlocking the secrets of the striatum and the basal ganglia."

One way to understand Parkinson's, according to Tepper, is to think of the screeching feedback that reverberates through a room when a microphone is held too close to a very loud speaker. Until it subsides, the senses of people in the room are overwhelmed. The process in the brain is, of course, much more complicated, but Tepper says "a feedback loop gone crazy" is an essential mechanism of Parkinson's.

In a brain that functions normally, the billions of electrical impulses that neurons generate each second are generally independent of one another. But in Parkinson's, for unknown reasons, many of the impulses occur simultaneously, synchronize with one another and then bounce back and forth in unison between brain structures called the subthalamus and the globus pallidus, and elsewhere, generating their own form of pathological feedback.

Tepper says this "perfect storm" then overwhelms the brain's ability to focus on muscle movement, memory and more. Unfortunately, the brain does not have a simple volume control to tame the howling neurological noise, a problem that probably cannot be solved at least until researchers like Tepper can fill in more gaps in the map of the brain's circuitry.

Tepper's role is especially important given the complexities of another potential path to solving Parkinson's. Unlike Huntington's disease, whose origins have been traced to mutations in a single gene, Tepper says Parkinson's comes from a constellation of genes, making it difficult to pinpoint specific genetic defects and produce gene-based therapies to reverse them. So in the quest for a Parkinson's cure, mapping the circuitry of the brain may be the most promising option, at least for the foreseeable future.

New tools are helping. One that excites Tepper is the ability to spot previously unidentifiable cells through genetic manipulation that turns cells with particular properties bright green when they are seen through a microscope. With that technique, Tepper and his team uncovered "several new kinds of cells in the striatum that nobody had ever been able to record from because there was no way to look at them and identify them or record their physiological properties." Also, by inserting a light-sensitive bacterial protein called channel rhodopsin -- similar to the light-sensing protein found in the retina of the eye -- into cells whose characteristics they want to examine, Tepper has been able to cause specific neurons to fire under controlled conditions by shining laser light on them. Each technique helps to identify just a bit more of the circuitry that governs brain function.

Tepper's work to reveal the intricacies of the brain has been long and painstaking, and will continue to be. "We don't have patients," he emphasizes. "We have cells and microcircruits." On its own, Tepper says, his research will not uncover cures for Parkinson's and other maladies that originate in the brain. But, he adds, "To understand what Parkinson's disease is and how it comes about, one of the things you have to understand is how the striatum works. That is what we work on."

Few are better positioned to succeed than Tepper, according to colleagues. "If Jim Tepper can uncover truly important mechanisms within the brain that were previously unknown and help pave the way to a Parkinson's cure," Parι says, "he will earn the gratitude of future researchers and patients alike."


Story Source:

The above story is based on materials provided by Rutgers Biomedical and Health Sciences. The original article was written by Rob Forman. Note: Materials may be edited for content and length.


Cite This Page:

Rutgers Biomedical and Health Sciences. "Exploring Brain for Keys to Solving Parkinson's Disease." ScienceDaily. ScienceDaily, 25 March 2014. <www.sciencedaily.com/releases/2014/03/140325101949.htm>.
Rutgers Biomedical and Health Sciences. (2014, March 25). Exploring Brain for Keys to Solving Parkinson's Disease. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2014/03/140325101949.htm
Rutgers Biomedical and Health Sciences. "Exploring Brain for Keys to Solving Parkinson's Disease." ScienceDaily. www.sciencedaily.com/releases/2014/03/140325101949.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) — Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) — Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) — It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins