Featured Research

from universities, journals, and other organizations

Sensing gravity with acid: Scientists discover role for protons in neurotransmission

Date:
March 25, 2014
Source:
Marine Biological Laboratory
Summary:
While probing how organisms sense gravity and acceleration, scientists uncovered evidence that acid (proton concentration) plays a key role in communication between neurons. Scientists discovered that sensory cells in the inner ear continuously transmit information on orientation of the head relative to gravity and low-frequency motion to the brain using protons as the key means of synaptic signal transmission.

The toadfish (Opsanus tau) is a model organism used by the Highstein lab to study hearing, balance, and synaptic transmission.
Credit: By Claire H. (originally posted to Flickr as Oyster Toadfish) [CC-BY-SA-2.0], via Wikimedia Commons

While probing how organisms sense gravity and acceleration, scientists at the Marine Biological Laboratory (MBL) and the University of Utah uncovered evidence that acid (proton concentration) plays a key role in communication between neurons. The surprising discovery is reported this week in the Proceedings of the National Academy of Sciences.

Related Articles


The team, led by the late MBL senior scientist Stephen M. Highstein, discovered that sensory cells in the inner ear continuously transmit information on orientation of the head relative to gravity and low-frequency motion to the brain using protons as the key means of synaptic signal transmission. (The synapse is the structure that allows one neuron to communicate with another by passing a chemical or electrical signal between them.)

"This addresses how we sense gravity and other low-frequency inertial stimuli, like acceleration of an automobile or roll of an airplane," says co-author Richard Rabbitt, a professor at University of Utah and adjunct faculty member in the MBL's Program in Sensory Physiology and Behavior. "These are very long-lasting signals requiring a a synapse that does not fatigue or lose sensitivity over time. Use of protons to acidify the space between cells and transmit information from one cell to another could explain how the inner ear is able to sense tonic signals, such as gravity, in a robust and energy efficient way."

The team found that this novel mode of neurotransmission between the sensory cells (type 1 vestibular hair cells) and their target afferent neurons (calyx nerve terminals), which send signals to the brain, is continuous or nonquantal. This nonquantal transmission is unusual and, for low-frequency stimuli like gravity, is more energy efficient than traditional synapses in which chemical neurotransmitters are packaged in vesicles and released quantally.

The calyx nerve terminal has a ball-in-socket shape that envelopes the sensory hair cell and helps to capture protons exiting the cell. "The inner-ear vestibular system is the only place where this particular type of synapse is present," Rabbitt says. "But the fact that protons are playing a key role here suggests they are likely to act as important signaling molecules in other synapses as well."

Previously, Erik Jorgensen of University of Utah (who recently received a Lillie Research Innovation Award from the MBL and the University of Chicago) and colleagues discovered that protons act as signaling molecules between muscle cells in the worm C. elegans and play an important role in muscle contraction. The present paper is the first to demonstrate that protons also act directly as a nonquantal chemical neurotransmitter in concert with classical neurotransmission mechanisms. The discovery suggests that similar intercellular proton signaling mechanisms might be at play in the central nervous system.

Stephen Highstein, who died in January 2014, was associate director of the MBL's Program in Sensory Physiology and Behavior. Mary Anne Mann, a research associate in the program, also participated in this research, as did Gay Holstein of Mt. Sinai School of Medicine.


Story Source:

The above story is based on materials provided by Marine Biological Laboratory. The original article was written by Diana Kenney. Note: Materials may be edited for content and length.


Journal Reference:

  1. Highstein SM, Holstein GR, Mann MA, and Rabbitt RD. Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses. Proceedings of the National Academy of Sciences, 2014 DOI: 10.1073/pnas.1319561111

Cite This Page:

Marine Biological Laboratory. "Sensing gravity with acid: Scientists discover role for protons in neurotransmission." ScienceDaily. ScienceDaily, 25 March 2014. <www.sciencedaily.com/releases/2014/03/140325154236.htm>.
Marine Biological Laboratory. (2014, March 25). Sensing gravity with acid: Scientists discover role for protons in neurotransmission. ScienceDaily. Retrieved January 24, 2015 from www.sciencedaily.com/releases/2014/03/140325154236.htm
Marine Biological Laboratory. "Sensing gravity with acid: Scientists discover role for protons in neurotransmission." ScienceDaily. www.sciencedaily.com/releases/2014/03/140325154236.htm (accessed January 24, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, January 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Florida Might Legalize Black Bear Hunting

Florida Might Legalize Black Bear Hunting

Newsy (Jan. 24, 2015) A string of black bear attacks has Florida officials considering lifting the ban on hunting the animals to control their population. Video provided by Newsy
Powered by NewsLook.com
Ebola Killing Large Portion Of Ape Population

Ebola Killing Large Portion Of Ape Population

Newsy (Jan. 23, 2015) Experts estimate Ebola has wiped out one-third of the world&apos;s gorillas and chimpanzees. Video provided by Newsy
Powered by NewsLook.com
Controversy Shrouds Captive Killer Whale in Miami

Controversy Shrouds Captive Killer Whale in Miami

Reuters - Light News Video Online (Jan. 23, 2015) Activists hope the National Oceanic and Atmospheric Agency (NOAA) will label killer whales endangered, allowing lawyers to sue a Miami aquarium to release an orca into the wild after 44 years. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
‘Healthy’ Foods That Surprisingly Pack on Pounds

‘Healthy’ Foods That Surprisingly Pack on Pounds

Buzz60 (Jan. 23, 2015) Some &apos;healthy&apos; foods are actually fattening. Fitness and nutrition expert John Basedow (@JohnBasedow) shines a light on the sneaky foods like nuts, seeds, granola, trail mix, avocados, guacamole, olive oil, peanut butter, fruit juices and salads that are good for you...but not so much for your waistline. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins